Skip to main content
Erschienen in: Journal of Materials Science 27/2022

02.07.2022 | Chemical routes to materials

In situ growth of nanostructured copper and zinc mixed oxides on brass supports as efficient microreactors for the catalytic CO oxidation

verfasst von: Ana P. Cabello, María A. Ulla, Juan M. Zamaro

Erschienen in: Journal of Materials Science | Ausgabe 27/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work analyzed the in situ growth of nanostructured films of copper and zinc mixed oxides on brass substrates by a simple vapor oxidation route and their use as microreactors for the catalytic oxidation of CO. Thin and well-anchored films of nano-oxides were obtained, while the evolution over time of the physicochemical characteristics during growth was studied by XRD, SEM, EDS, LRS and XPS. At short treatment times a total coverage of the substrate with nano-oxide growths was obtained in a sequence in which first a base layer of zinc oxide was produced over which, subsequently, an increasing surface proportion of copper oxides progressively evolved. This stratification is a unique characteristic that contrasts with that of films obtained by conventional thermal treatments in air in which an outer layer of zinc oxide is produced. In this way, the study shed light on the understanding of the in situ growth mechanism of nano-oxides on brass substrates. Furthermore, this system showed a good performance for the catalytic CO oxidation reaction at relatively low temperatures, combining several attributes such as activity, reaction stability, low-cost materials and a simple and mild synthetic methodology. The non-noble metal-based microreactor with highly stabilized nano-oxide structures onto brass became an efficient and low-cost alternative for the catalytic CO oxidation reaction.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Soliman NK (2019) Factors affecting CO oxidation reaction over nanosized materials: a review. J Matter Res Technol 8:2395–2407CrossRef Soliman NK (2019) Factors affecting CO oxidation reaction over nanosized materials: a review. J Matter Res Technol 8:2395–2407CrossRef
2.
Zurück zum Zitat Morris Bullock R (2017) Reaction: earth-abundant metal catalysts for energy conversions. Chem 2:444–446CrossRef Morris Bullock R (2017) Reaction: earth-abundant metal catalysts for energy conversions. Chem 2:444–446CrossRef
3.
Zurück zum Zitat Ludwig JR, Schindler CS (2017) Catalyst: sustainable catalysis. Chem 2:313–316CrossRef Ludwig JR, Schindler CS (2017) Catalyst: sustainable catalysis. Chem 2:313–316CrossRef
4.
Zurück zum Zitat Huang TJ, Tsai DH (2003) CO oxidation behavior of copper and copper oxides. Catal Lett 87:173–178CrossRef Huang TJ, Tsai DH (2003) CO oxidation behavior of copper and copper oxides. Catal Lett 87:173–178CrossRef
5.
Zurück zum Zitat Ma B, Kong C, Lv J, Zhang X, Yang S, Yang T, Yang Z (2020) Cu–Cu2O heterogeneous architecture for the enhanced CO catalytic oxidation. Adv Mater Interfaces 7:1901643CrossRef Ma B, Kong C, Lv J, Zhang X, Yang S, Yang T, Yang Z (2020) Cu–Cu2O heterogeneous architecture for the enhanced CO catalytic oxidation. Adv Mater Interfaces 7:1901643CrossRef
6.
Zurück zum Zitat Taylor S, Hutchings G, Mirzaei A (2003) The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catal Today 84:113–119CrossRef Taylor S, Hutchings G, Mirzaei A (2003) The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catal Today 84:113–119CrossRef
7.
Zurück zum Zitat Pillai UR, Deevi S (2006) Copper-zinc oxide and ceria promoted copper-zinc oxide as highly active catalysts for low temperature oxidation of carbon monoxide. Appl Catal B Environ 65:110–117CrossRef Pillai UR, Deevi S (2006) Copper-zinc oxide and ceria promoted copper-zinc oxide as highly active catalysts for low temperature oxidation of carbon monoxide. Appl Catal B Environ 65:110–117CrossRef
8.
Zurück zum Zitat Cuenya B (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150CrossRef Cuenya B (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150CrossRef
9.
Zurück zum Zitat Huang W (2016) Oxide nanocrystal model catalysts. Acc Chem Res 49:520–527CrossRef Huang W (2016) Oxide nanocrystal model catalysts. Acc Chem Res 49:520–527CrossRef
10.
Zurück zum Zitat Sahu K, Satpati B, Mohapatra S (2021) Facile fabrication of CuO nanosheets for photocatalytic applications. Appl Phys A 127:361CrossRef Sahu K, Satpati B, Mohapatra S (2021) Facile fabrication of CuO nanosheets for photocatalytic applications. Appl Phys A 127:361CrossRef
11.
Zurück zum Zitat Kulkarni S, Ghosh R (2021) A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires. Sens Actuators B Chem 335:129701CrossRef Kulkarni S, Ghosh R (2021) A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires. Sens Actuators B Chem 335:129701CrossRef
12.
Zurück zum Zitat Yetim NK, Aslan N, Sarıoğlu A, Sarı N, Koç MM (2020) Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J Mater Sci Mater Electron 31:12238–12248CrossRef Yetim NK, Aslan N, Sarıoğlu A, Sarı N, Koç MM (2020) Structural, electrochemical and optical properties of hydrothermally synthesized transition metal oxide (Co3O4, NiO, CuO) nanoflowers. J Mater Sci Mater Electron 31:12238–12248CrossRef
13.
Zurück zum Zitat Singh J, Juneja S, Palsaniya S, Manna AK, Soni RK, Bhattacharya J (2019) Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf B 184:110541CrossRef Singh J, Juneja S, Palsaniya S, Manna AK, Soni RK, Bhattacharya J (2019) Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf B 184:110541CrossRef
14.
Zurück zum Zitat Neyertz C, Gallo A, Ulla M, Zamaro J (2016) Nanostructured CuOx coatings onto Cu foils: surface growth by the combination of gas-phase treatments. Surf Coat Technol 285:262–269CrossRef Neyertz C, Gallo A, Ulla M, Zamaro J (2016) Nanostructured CuOx coatings onto Cu foils: surface growth by the combination of gas-phase treatments. Surf Coat Technol 285:262–269CrossRef
15.
Zurück zum Zitat Moise CC, Enache LB, Anăstăsoaie V, Lazăr OA, Mihai GB, Bercu M, Enăchescu M (2021) On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure. J Alloys Compd 886:161130CrossRef Moise CC, Enache LB, Anăstăsoaie V, Lazăr OA, Mihai GB, Bercu M, Enăchescu M (2021) On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure. J Alloys Compd 886:161130CrossRef
16.
Zurück zum Zitat Morales M, Cadus L (2013) Cooper foils used as support for catalytic monoliths. superficial nano/microstructures obtained for two treatments. Catal Today 213:171–182CrossRef Morales M, Cadus L (2013) Cooper foils used as support for catalytic monoliths. superficial nano/microstructures obtained for two treatments. Catal Today 213:171–182CrossRef
17.
Zurück zum Zitat Arafat MM, Rozali S, Haseeb ASMA, Ibrahim S (2020) Direct and catalyst-free synthesis of ZnO nanowires on brass by thermal oxidation. Nanotechnology 31:175603CrossRef Arafat MM, Rozali S, Haseeb ASMA, Ibrahim S (2020) Direct and catalyst-free synthesis of ZnO nanowires on brass by thermal oxidation. Nanotechnology 31:175603CrossRef
18.
Zurück zum Zitat Xu CH, Zhu ZB, Li GL, Xu WR, Huang HX (2010) Growth of ZnO nanostructure on Cu0.62Zn0.38 brass foils by thermal oxidation. Mater Chem Phys 124:252–256CrossRef Xu CH, Zhu ZB, Li GL, Xu WR, Huang HX (2010) Growth of ZnO nanostructure on Cu0.62Zn0.38 brass foils by thermal oxidation. Mater Chem Phys 124:252–256CrossRef
19.
Zurück zum Zitat Yuan L, Wang C, Cai R, Wang Y, Zhou G (2013) Spontaneous ZnO nanowire formation during oxidation of Cu–Zn alloy. J Appl Phys 114:23512CrossRef Yuan L, Wang C, Cai R, Wang Y, Zhou G (2013) Spontaneous ZnO nanowire formation during oxidation of Cu–Zn alloy. J Appl Phys 114:23512CrossRef
20.
Zurück zum Zitat Chou CM, Chang YC, Lin PS, Liu FK (2017) Growth of Cu-doped ZnO nanowires or ZnO–CuO nanowires on the same brass foil with high performance photocatalytic activity and stability. Mater Chem Phys 201:18–25CrossRef Chou CM, Chang YC, Lin PS, Liu FK (2017) Growth of Cu-doped ZnO nanowires or ZnO–CuO nanowires on the same brass foil with high performance photocatalytic activity and stability. Mater Chem Phys 201:18–25CrossRef
21.
Zurück zum Zitat Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337CrossRef Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337CrossRef
22.
Zurück zum Zitat Chen X, Zhang N, Sun K (2012) Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J Mater Chem 22:13637–13642CrossRef Chen X, Zhang N, Sun K (2012) Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J Mater Chem 22:13637–13642CrossRef
23.
Zurück zum Zitat Soejima T, Yagyu H, Kimizuka N, Ito S (2011) One-pot alkaline vapor oxidation synthesis and electrocatalytic activity towards glucose oxidation of CuO nanobelt arrays. RCS Adv 1:187–190 Soejima T, Yagyu H, Kimizuka N, Ito S (2011) One-pot alkaline vapor oxidation synthesis and electrocatalytic activity towards glucose oxidation of CuO nanobelt arrays. RCS Adv 1:187–190
24.
Zurück zum Zitat Papurello RL, Cabello AP, Ulla MA, Neyertz CA, Zamaro JM (2017) Microreactor with copper oxide nanostructured films for catalytic gas phase oxidations. Surf Coat Technol 328:231–239CrossRef Papurello RL, Cabello AP, Ulla MA, Neyertz CA, Zamaro JM (2017) Microreactor with copper oxide nanostructured films for catalytic gas phase oxidations. Surf Coat Technol 328:231–239CrossRef
25.
Zurück zum Zitat Varma DR, Mulay S, Chemtob S (2015) Carbon monoxide: from public health risk to painless killer. In: Gupta R (ed) Handbook of toxicology of chemical warfare agents. Elsevier, Amsterdam Varma DR, Mulay S, Chemtob S (2015) Carbon monoxide: from public health risk to painless killer. In: Gupta R (ed) Handbook of toxicology of chemical warfare agents. Elsevier, Amsterdam
26.
Zurück zum Zitat Moretti E, Storaro L, Talon A, Patrono P, Pinzari F, Montanari T, Ramis G, Lenarda M (2008) Preferential CO oxidation (CO-PROX) over CuO–ZnO/TiO2 catalysts. Appl Catal A Gen 344:165–174CrossRef Moretti E, Storaro L, Talon A, Patrono P, Pinzari F, Montanari T, Ramis G, Lenarda M (2008) Preferential CO oxidation (CO-PROX) over CuO–ZnO/TiO2 catalysts. Appl Catal A Gen 344:165–174CrossRef
27.
Zurück zum Zitat El-Shobaky G, Yehia N, Hassan M, Badawy A (2009) Catalytic oxidation of CO by O2 over nanosized CuO–ZnO system prepared under various conditions. Can J Chem Eng 87:792–800CrossRef El-Shobaky G, Yehia N, Hassan M, Badawy A (2009) Catalytic oxidation of CO by O2 over nanosized CuO–ZnO system prepared under various conditions. Can J Chem Eng 87:792–800CrossRef
28.
Zurück zum Zitat Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110:2–14CrossRef Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110:2–14CrossRef
29.
Zurück zum Zitat Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng 8:285–305CrossRef Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng 8:285–305CrossRef
30.
Zurück zum Zitat Zamaro J, Ulla M, Miro E (2006) Growth of mordenite on monoliths by secondary synthesis. Effects of the substrate on the coating structure and catalytic activity. Appl Catal A Gen 314:101–113CrossRef Zamaro J, Ulla M, Miro E (2006) Growth of mordenite on monoliths by secondary synthesis. Effects of the substrate on the coating structure and catalytic activity. Appl Catal A Gen 314:101–113CrossRef
31.
Zurück zum Zitat Fratalocchi L, Visconti CG, Groppi G, Lietti L, Tronconi E (2018) Intensifying heat transfer in Fischer-Tropsch tubular reactors through the adoption of conductive packed foams. Chem Eng J 349:829–837CrossRef Fratalocchi L, Visconti CG, Groppi G, Lietti L, Tronconi E (2018) Intensifying heat transfer in Fischer-Tropsch tubular reactors through the adoption of conductive packed foams. Chem Eng J 349:829–837CrossRef
33.
Zurück zum Zitat Zamaro JM, Miró EE (2011) Copper alloy microstructures for application in microreactors. In: Naboka M, Giordano J (eds) Copper alloys: preparation, properties and applications. Nova Science Publishers Inc., New York, pp 127–139 Zamaro JM, Miró EE (2011) Copper alloy microstructures for application in microreactors. In: Naboka M, Giordano J (eds) Copper alloys: preparation, properties and applications. Nova Science Publishers Inc., New York, pp 127–139
34.
Zurück zum Zitat Soejima T, Takada K, Ito S (2013) Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Appl Surf Sci 277:192–200CrossRef Soejima T, Takada K, Ito S (2013) Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Appl Surf Sci 277:192–200CrossRef
35.
Zurück zum Zitat Babikier M, Wang D, Wang J, Li Q, Sun J, Yan Y, Yu Q, Jiao S (2014) Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration. Nanoscale Res Lett 9:199CrossRef Babikier M, Wang D, Wang J, Li Q, Sun J, Yan Y, Yu Q, Jiao S (2014) Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration. Nanoscale Res Lett 9:199CrossRef
36.
Zurück zum Zitat Debbichi L, Marco de Lucas M, Pierson J, Krüger P (2012) Vibrational properties of CuO and Cu4O3 from first-principles calculations, and raman and infrared spectroscopy. J Phys Chem C 116:10232–10237CrossRef Debbichi L, Marco de Lucas M, Pierson J, Krüger P (2012) Vibrational properties of CuO and Cu4O3 from first-principles calculations, and raman and infrared spectroscopy. J Phys Chem C 116:10232–10237CrossRef
37.
Zurück zum Zitat Korepanov V, Chan S, Hsu H, Hamaguchi H (2019) Phonon confinement and size effect in Raman spectra of ZnO nanoparticles. Heliyon 5:e01222CrossRef Korepanov V, Chan S, Hsu H, Hamaguchi H (2019) Phonon confinement and size effect in Raman spectra of ZnO nanoparticles. Heliyon 5:e01222CrossRef
38.
Zurück zum Zitat Barbosa E, Coelho J, Spada E, Amorim D, Souza L, Cordeiro N, De Santana H, Duarte J, Floriano J, Schreiner W, Macedo A, Faria R, Rodrigues P (2019) ZnO nanoparticles, nanorods, hexagonal plates and nanosheets produced by polyol route and the effect of surface passivation by acetate molecules on optical properties. J Electron Mater 48:6437–6445CrossRef Barbosa E, Coelho J, Spada E, Amorim D, Souza L, Cordeiro N, De Santana H, Duarte J, Floriano J, Schreiner W, Macedo A, Faria R, Rodrigues P (2019) ZnO nanoparticles, nanorods, hexagonal plates and nanosheets produced by polyol route and the effect of surface passivation by acetate molecules on optical properties. J Electron Mater 48:6437–6445CrossRef
39.
Zurück zum Zitat Poulston S, Parlett P, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820CrossRef Poulston S, Parlett P, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820CrossRef
40.
Zurück zum Zitat Biesinger M, Lau L, Gerson A, Smart R (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898CrossRef Biesinger M, Lau L, Gerson A, Smart R (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898CrossRef
41.
Zurück zum Zitat Meda L, Ranghino G, Moretti G, Cerofolini G (2002) XPS detection of some redox phenomena in Cu-zeolites. Surf Interface Anal 33:516–521CrossRef Meda L, Ranghino G, Moretti G, Cerofolini G (2002) XPS detection of some redox phenomena in Cu-zeolites. Surf Interface Anal 33:516–521CrossRef
42.
Zurück zum Zitat Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. Chem Mater 14:4172–4177CrossRef Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. Chem Mater 14:4172–4177CrossRef
43.
Zurück zum Zitat Wen X, Zhang W, Yang S, Dai Z, Wang Z (2002) Solution phase synthesis of Cu(OH)2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors. Nano Lett 2(12):1397–1401CrossRef Wen X, Zhang W, Yang S, Dai Z, Wang Z (2002) Solution phase synthesis of Cu(OH)2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors. Nano Lett 2(12):1397–1401CrossRef
44.
Zurück zum Zitat Wen X, Zhang W, Yang S (2003) Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir 19:5898–5903CrossRef Wen X, Zhang W, Yang S (2003) Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir 19:5898–5903CrossRef
45.
Zurück zum Zitat Cabello AP, Ulla MA, Zamaro JM (2019) CeO2/CuOx nanostructured films for CO oxidation and CO oxidation in hydrogen-rich streams using a micro-structured reactor. Top Catal 62:931–940CrossRef Cabello AP, Ulla MA, Zamaro JM (2019) CeO2/CuOx nanostructured films for CO oxidation and CO oxidation in hydrogen-rich streams using a micro-structured reactor. Top Catal 62:931–940CrossRef
Metadaten
Titel
In situ growth of nanostructured copper and zinc mixed oxides on brass supports as efficient microreactors for the catalytic CO oxidation
verfasst von
Ana P. Cabello
María A. Ulla
Juan M. Zamaro
Publikationsdatum
02.07.2022
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 27/2022
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07391-6

Weitere Artikel der Ausgabe 27/2022

Journal of Materials Science 27/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.