Skip to main content
Erschienen in: Experimental Mechanics 3/2019

04.01.2019

In Situ Micromechanical Characterization of Metallic Glass Microwires under Torsional Loading

verfasst von: S. Fan, C. Jiang, H. Lu, F. Li, Y. Yang, Y. Shen, Y. Lu

Erschienen in: Experimental Mechanics | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Small-scale metallic glasses have many applications in microelectromechanical systems (MEMS) and sensors which require good mechanical properties. Bending, tensile and compression properties of metallic glasses at micro/nano-scale have been well investigated previously. In this work, by developing a micro robotic system, we investigated the torsional behavior of Fe-Co based metallic glass microwires inside a scanning electron microscope (SEM). Benefiting from the in situ SEM imaging capability, the fracture behavior of metallic glass microwire has been uncovered clearly. Through the postmortem fractographic analysis, it can be revealed that both spiral stripes and shear bands contributed to the fracture mechanism of the microscale metallic glass. Plastic deformation of the microwires include both homogenous and inhomogeneous plastic strain, which began with the liquid-like region, then a crack formed because of shear bands and propagated along the spiral direction. Although the metallic glass microwire broke in brittle mode, the shear strain was not lower than that of conventional metal wires. Moreover, we found an inverse relationship between the plastic strain and the loading rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Telford M (2004) The case for bulk metallic glass. Mater Today 7(3):36–43CrossRef Telford M (2004) The case for bulk metallic glass. Mater Today 7(3):36–43CrossRef
2.
Zurück zum Zitat Peter W et al (2002) Fatigue behavior of Zr 52.5 Al 10 Ti 5 cu 17.9 Ni 14.6 bulk metallic glass. Intermetallics 10(11):1125–1129CrossRef Peter W et al (2002) Fatigue behavior of Zr 52.5 Al 10 Ti 5 cu 17.9 Ni 14.6 bulk metallic glass. Intermetallics 10(11):1125–1129CrossRef
3.
Zurück zum Zitat Zhang Z, Eckert J, Schultz L (2004) Fatigue and fracture behavior of bulk metallic glass. Metall Mater Trans A 35(11):3489–3498CrossRef Zhang Z, Eckert J, Schultz L (2004) Fatigue and fracture behavior of bulk metallic glass. Metall Mater Trans A 35(11):3489–3498CrossRef
4.
Zurück zum Zitat Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–656CrossRef Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–656CrossRef
5.
6.
Zurück zum Zitat Jiang QK, Liu P, Ma Y et al (2012) Super elastic strain limit in metallic glass films. Sci Rep 2(11):852CrossRef Jiang QK, Liu P, Ma Y et al (2012) Super elastic strain limit in metallic glass films. Sci Rep 2(11):852CrossRef
7.
Zurück zum Zitat Gosvami NN, Nalam PC, Exarhos AL et al (2014) Direct torsional actuation of microcantilevers using magnetic excitation. Appl Phys Lett 105(9):093101CrossRef Gosvami NN, Nalam PC, Exarhos AL et al (2014) Direct torsional actuation of microcantilevers using magnetic excitation. Appl Phys Lett 105(9):093101CrossRef
8.
Zurück zum Zitat Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85(2):77–87CrossRef Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85(2):77–87CrossRef
9.
Zurück zum Zitat Mukai T et al (2002) Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr Mater 46(1):43–47CrossRef Mukai T et al (2002) Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr Mater 46(1):43–47CrossRef
10.
Zurück zum Zitat Schuster BE et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100CrossRef Schuster BE et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100CrossRef
12.
Zurück zum Zitat Sharma P et al (2007) Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems. Nanotechnology 18(3):035302CrossRef Sharma P et al (2007) Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems. Nanotechnology 18(3):035302CrossRef
13.
Zurück zum Zitat Phan TA et al (2015) Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron Eng 135:28–31CrossRef Phan TA et al (2015) Current sensors using Fe–B–Nd–Nb magnetic metallic glass micro-cantilevers. Microelectron Eng 135:28–31CrossRef
14.
Zurück zum Zitat Zhang Z et al (2003) Fracture mechanisms in bulk metallic glassy materials. Phys Rev Lett 91(4):045505CrossRef Zhang Z et al (2003) Fracture mechanisms in bulk metallic glassy materials. Phys Rev Lett 91(4):045505CrossRef
15.
Zurück zum Zitat Wright WJ, Saha R, Nix WD (2001) Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans 42(4):642–649CrossRef Wright WJ, Saha R, Nix WD (2001) Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans 42(4):642–649CrossRef
16.
Zurück zum Zitat Conner R et al (2003) Shear bands and cracking of metallic glass plates in bending. J Appl Phys 94(2):904–911CrossRef Conner R et al (2003) Shear bands and cracking of metallic glass plates in bending. J Appl Phys 94(2):904–911CrossRef
17.
Zurück zum Zitat Conner RD et al (2004) Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater 52(8):2429–2434CrossRef Conner RD et al (2004) Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater 52(8):2429–2434CrossRef
18.
Zurück zum Zitat Shen H et al (2015) Tensile properties and fracture reliability of melt-extracted Gd-rich amorphous wires. Mater Res 18:66–71CrossRef Shen H et al (2015) Tensile properties and fracture reliability of melt-extracted Gd-rich amorphous wires. Mater Res 18:66–71CrossRef
19.
Zurück zum Zitat Banerjee A et al (2016) Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. J Appl Phys 119(15):155102CrossRef Banerjee A et al (2016) Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. J Appl Phys 119(15):155102CrossRef
20.
Zurück zum Zitat Sun H et al (2016) Tensile strength reliability analysis of Cu48Zr48Al4 amorphous microwires. Metals 6(12):296CrossRef Sun H et al (2016) Tensile strength reliability analysis of Cu48Zr48Al4 amorphous microwires. Metals 6(12):296CrossRef
21.
Zurück zum Zitat Xing L-Q et al (2001) Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys Rev B 64(18):180201CrossRef Xing L-Q et al (2001) Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys Rev B 64(18):180201CrossRef
22.
Zurück zum Zitat Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93(25):255506CrossRef Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93(25):255506CrossRef
23.
Zurück zum Zitat Das J et al (2005) “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 94(20):205501CrossRef Das J et al (2005) “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 94(20):205501CrossRef
24.
Zurück zum Zitat Zberg B et al (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57(11):3223–3231CrossRef Zberg B et al (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57(11):3223–3231CrossRef
25.
Zurück zum Zitat Guo H et al (2007) Tensile ductility and necking of metallic glass. Nat Mater 6(10):735CrossRef Guo H et al (2007) Tensile ductility and necking of metallic glass. Nat Mater 6(10):735CrossRef
26.
Zurück zum Zitat Schuster B et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100CrossRef Schuster B et al (2008) Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater 56(18):5091–5100CrossRef
27.
Zurück zum Zitat Greer JR et al (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830CrossRef Greer JR et al (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830CrossRef
28.
Zurück zum Zitat Uchic MD et al (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989CrossRef Uchic MD et al (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989CrossRef
29.
Zurück zum Zitat Han XD et al (2007) Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett 7(2):452–457CrossRef Han XD et al (2007) Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett 7(2):452–457CrossRef
30.
Zurück zum Zitat Han X et al (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19(16):2112–2118CrossRef Han X et al (2007) Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 19(16):2112–2118CrossRef
31.
Zurück zum Zitat Wang L et al (2013) In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 4:2413CrossRef Wang L et al (2013) In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat Commun 4:2413CrossRef
32.
Zurück zum Zitat Shang W et al (2016) Vision-based nano robotic system for high-throughput non-embedded cell cutting. Sci Rep 6:22534 Shang W et al (2016) Vision-based nano robotic system for high-throughput non-embedded cell cutting. Sci Rep 6:22534
33.
Zurück zum Zitat Shen Y et al (2015) Multidirectional image sensing for microscopy based on a rotatable robot. Sensors 15(12):31566–31580CrossRef Shen Y et al (2015) Multidirectional image sensing for microscopy based on a rotatable robot. Sensors 15(12):31566–31580CrossRef
34.
Zurück zum Zitat Wan W et al (2016) Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Adv 6(9):095309CrossRef Wan W et al (2016) Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Adv 6(9):095309CrossRef
35.
Zurück zum Zitat Shen Y et al (2016) Automatic sample alignment under microscopy for 360° imaging based on the nanorobotic manipulation system. IEEE T Robot 33(1):220–226 Shen Y et al (2016) Automatic sample alignment under microscopy for 360° imaging based on the nanorobotic manipulation system. IEEE T Robot 33(1):220–226
36.
Zurück zum Zitat Jiang C, Lu H, Cao K et al (2017) In situ SEM torsion test of metallic glass microwires based on micro robotic manipulation. Scanning 2017:1–7 Jiang C, Lu H, Cao K et al (2017) In situ SEM torsion test of metallic glass microwires based on micro robotic manipulation. Scanning 2017:1–7
37.
Zurück zum Zitat Guan P et al (2010) Stress-temperature scaling for steady-state flow in metallic glasses. Phys Rev Lett 104(20):205701CrossRef Guan P et al (2010) Stress-temperature scaling for steady-state flow in metallic glasses. Phys Rev Lett 104(20):205701CrossRef
38.
Zurück zum Zitat Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58CrossRef Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58CrossRef
39.
Zurück zum Zitat Lu Z et al (2014) Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett 113(4):045501CrossRef Lu Z et al (2014) Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys Rev Lett 113(4):045501CrossRef
40.
Zurück zum Zitat Zhang ZF et al (2003) Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater 51(4):1167–1179CrossRef Zhang ZF et al (2003) Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater 51(4):1167–1179CrossRef
Metadaten
Titel
In Situ Micromechanical Characterization of Metallic Glass Microwires under Torsional Loading
verfasst von
S. Fan
C. Jiang
H. Lu
F. Li
Y. Yang
Y. Shen
Y. Lu
Publikationsdatum
04.01.2019
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 3/2019
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-018-00464-1

Weitere Artikel der Ausgabe 3/2019

Experimental Mechanics 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.