Skip to main content

2017 | OriginalPaper | Buchkapitel

4. In-Situ Neutron Diffraction Experiments

verfasst von : Stephen Hull

Erschienen in: Electro-Chemo-Mechanics of Solids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neutron powder diffraction has been extensively used to probe the structure-property relationships within materials of technological importance in the fields of energy production and storage. Typically, these exploit the sensitivity of the neutron technique to the locations of light elements such as hydrogen, lithium and oxygen in the presence of heavier species. In recent years, there has been increased interest in the development of in-situ methods. These include electrochemical cells to allow time-resolved diffraction studies of battery electrode materials to be performed during charge-discharge cycling and facilities to study oxide-ion conducting ceramic electrolytes under temperature and atmosphere conditions experienced within solid oxide fuel cells. This chapter provides a brief introduction to the diffraction technique, neutron instrumentation and in-situ methods, followed by a summary of recent studies in the fields of battery and fuel cell research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
There are exceptions to this categorisation of reactor- and accelerator-based sources as continuous and pulsed, respectively, such as the continuous neutron source at the SINQ accelerator of the Paul Scherrer Institut, Villigen, Switzerland and the IBR-2 pulsed reactor operated at the Frank Laboratory of Neutron Physics, Dubna, Russia.
 
Literatur
1.
Zurück zum Zitat Dinnebier, R. E. (2008). Powder diffraction: Theory and practice. London, U.K.: Royal Society of Chemistry. Dinnebier, R. E. (2008). Powder diffraction: Theory and practice. London, U.K.: Royal Society of Chemistry.
2.
Zurück zum Zitat Kisi, E. H., & Howard, C. J. (2012). Applications of neutron powder diffraction. Oxford, U.K.: Oxford University Press. Kisi, E. H., & Howard, C. J. (2012). Applications of neutron powder diffraction. Oxford, U.K.: Oxford University Press.
3.
Zurück zum Zitat David, W. I. F., Shankland, K., McCusker, L. B., & Baerlocher, C. (2006). Structure determination from powder diffraction data. Oxford, U.S.A: Oxford University Press. David, W. I. F., Shankland, K., McCusker, L. B., & Baerlocher, C. (2006). Structure determination from powder diffraction data. Oxford, U.S.A: Oxford University Press.
4.
Zurück zum Zitat Will, G. (2010). Powder diffraction: The Rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data (2010). Will, G. (2010). Powder diffraction: The Rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data (2010).
5.
Zurück zum Zitat Jenkins, R., & Snyder, R. L. (1996). Introduction to X-ray powder diffractometry. New York: Wiley. Jenkins, R., & Snyder, R. L. (1996). Introduction to X-ray powder diffractometry. New York: Wiley.
6.
Zurück zum Zitat Wilson, A. J. C. (1995). International tables for crystallography, Vol. C: Mathematical, physical and chemical tables. Dordrecht: Kluwer Academic Publishers. Wilson, A. J. C. (1995). International tables for crystallography, Vol. C: Mathematical, physical and chemical tables. Dordrecht: Kluwer Academic Publishers.
7.
Zurück zum Zitat Stout, G. H., & Jensen, L. H. (1989). X-ray structure determination. A practical guide. New York: Wiley. Stout, G. H., & Jensen, L. H. (1989). X-ray structure determination. A practical guide. New York: Wiley.
8.
Zurück zum Zitat Egami, T., & Billinge, S. J. L. (2003). Underneath the Bragg peaks. Structural analysis of complex materials. Pergamon. Egami, T., & Billinge, S. J. L. (2003). Underneath the Bragg peaks. Structural analysis of complex materials. Pergamon.
9.
Zurück zum Zitat Nield, V. M., & Keen, D. A. (2000). Diffuse neutron scattering from crystalline materials. Oxford: Oxford University Press. Nield, V. M., & Keen, D. A. (2000). Diffuse neutron scattering from crystalline materials. Oxford: Oxford University Press.
10.
Zurück zum Zitat Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71.
11.
Zurück zum Zitat Young, R. A. (1995). The Rietveld method. Oxford: Oxford University Press. Young, R. A. (1995). The Rietveld method. Oxford: Oxford University Press.
12.
Zurück zum Zitat Duke, P. (2000). Synchrotron radiation. Production and properties. Oxford: Oxford University Press. Duke, P. (2000). Synchrotron radiation. Production and properties. Oxford: Oxford University Press.
13.
Zurück zum Zitat Hofmann, A., & Ericson, T. (2004). The physics of synchrotron radiation. Cambridge: Cambridge University Press. Hofmann, A., & Ericson, T. (2004). The physics of synchrotron radiation. Cambridge: Cambridge University Press.
14.
Zurück zum Zitat Ōnuki, H., & Elleaume, P. (2003). Undulators, wigglers, and their applications. Routledge: Taylor and Francis Ltd. Ōnuki, H., & Elleaume, P. (2003). Undulators, wigglers, and their applications. Routledge: Taylor and Francis Ltd.
15.
Zurück zum Zitat Willis, B. T. M., & Carlile, C. J. (2009). Experimental neutron scattering. Oxford: Oxford University Press. Willis, B. T. M., & Carlile, C. J. (2009). Experimental neutron scattering. Oxford: Oxford University Press.
16.
Zurück zum Zitat Lovesey, S. W. (1986). Theory of neutron scattering from condensed matter. I. Nuclear scattering (Vol. 1). Oxford: Oxford University Press. Lovesey, S. W. (1986). Theory of neutron scattering from condensed matter. I. Nuclear scattering (Vol. 1). Oxford: Oxford University Press.
17.
Zurück zum Zitat Lovesey, S. W. (1986). Theory of neutron scattering from condensed matter. II. Polarization effects and magnetic scattering (Vol. 1). Oxford: Oxford University Press. Lovesey, S. W. (1986). Theory of neutron scattering from condensed matter. II. Polarization effects and magnetic scattering (Vol. 1). Oxford: Oxford University Press.
18.
Zurück zum Zitat Willis, B. T. M. (Ed.). (1973). Chemical applications of thermal neutron scattering. Oxford: Oxford University Press. Willis, B. T. M. (Ed.). (1973). Chemical applications of thermal neutron scattering. Oxford: Oxford University Press.
19.
Zurück zum Zitat Windsor, C. G. (1981). Pulsed neutron scattering. New York: Wiley. Windsor, C. G. (1981). Pulsed neutron scattering. New York: Wiley.
20.
Zurück zum Zitat Sears, V. F. (1992). Neutron scattering lengths and cross sections. Neutron News, 3, 26–37. Sears, V. F. (1992). Neutron scattering lengths and cross sections. Neutron News, 3, 26–37.
21.
Zurück zum Zitat Nazri, G.-A., & Pistoia, G. (2009). Lithium batteries. Science and technology. Berlin: Springer. Nazri, G.-A., & Pistoia, G. (2009). Lithium batteries. Science and technology. Berlin: Springer.
22.
Zurück zum Zitat van Schalkwijk, W., & Scrosati, B. (2002). Advances in lithium-ion batteries. Dordrecht: Kluwer Academic (2002). van Schalkwijk, W., & Scrosati, B. (2002). Advances in lithium-ion batteries. Dordrecht: Kluwer Academic (2002).
23.
Zurück zum Zitat Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chemical Reviews, 104, 4271–4302. Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chemical Reviews, 104, 4271–4302.
24.
Zurück zum Zitat Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162, 30–40. Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162, 30–40.
25.
Zurück zum Zitat Ishihara, T., Sammes, N. M., & Yamamoto, O. (2003). Electrolytes. In S. C. Singhal & K. Kendall (Eds.), High temperature solid oxide fuel cells. Fundamentals, design and applications. Oxford: Elsevier. Ishihara, T., Sammes, N. M., & Yamamoto, O. (2003). Electrolytes. In S. C. Singhal & K. Kendall (Eds.), High temperature solid oxide fuel cells. Fundamentals, design and applications. Oxford: Elsevier.
26.
Zurück zum Zitat Dell, R. M., & Rand D. A. J. (2001). Understanding batteries. London: Royal Society of Chemistry. Dell, R. M., & Rand D. A. J. (2001). Understanding batteries. London: Royal Society of Chemistry.
27.
Zurück zum Zitat Johnson, B. A., & White, R. E. (1998). Characterization of commercially available lithium-ion batteries. Journal of Power Sources, 70, 48–54. Johnson, B. A., & White, R. E. (1998). Characterization of commercially available lithium-ion batteries. Journal of Power Sources, 70, 48–54.
28.
Zurück zum Zitat Karden, E., Ploumen, S., Fricke, B., Miller, T., & Snyder, K. (2007). Energy storage devices for future hybrid electric vehicles. Journal of Power Sources, 168, 2–11. Karden, E., Ploumen, S., Fricke, B., Miller, T., & Snyder, K. (2007). Energy storage devices for future hybrid electric vehicles. Journal of Power Sources, 168, 2–11.
29.
Zurück zum Zitat Tollefson, J. (2008). Car industry: Charging up the future. Nature, 456, 436–440. Tollefson, J. (2008). Car industry: Charging up the future. Nature, 456, 436–440.
30.
Zurück zum Zitat Bates, J. B., Dubney, N. J., Neudecker, B., Ueda, A., & Evans, C. D. (2000). Thin-film lithium and lithium-ion batteries. Solid State Ionics, 135, 33–45. Bates, J. B., Dubney, N. J., Neudecker, B., Ueda, A., & Evans, C. D. (2000). Thin-film lithium and lithium-ion batteries. Solid State Ionics, 135, 33–45.
31.
Zurück zum Zitat Bruce, P. G., Cahn, R., Bagshaw, N. E., & Hamnett, A. (1996). Rechargeable lithium batteries. Philosophical Transactions of the Royal Society of London A, 354, 1577–1594. Bruce, P. G., Cahn, R., Bagshaw, N. E., & Hamnett, A. (1996). Rechargeable lithium batteries. Philosophical Transactions of the Royal Society of London A, 354, 1577–1594.
32.
Zurück zum Zitat Delmas, C., Ménétrier, M., Croguennec, L., Levasseur, S., Pérès, J. P., Pouillerie, C., et al. (1999). Lithium batteries: A new tool in solid state chemistry. International Journal of Inorganic Materials, 1, 11–19. Delmas, C., Ménétrier, M., Croguennec, L., Levasseur, S., Pérès, J. P., Pouillerie, C., et al. (1999). Lithium batteries: A new tool in solid state chemistry. International Journal of Inorganic Materials, 1, 11–19.
33.
Zurück zum Zitat Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22, 587–603. Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22, 587–603.
34.
Zurück zum Zitat Nishi, Y. (2001). Lithium ion secondary batteries. Past 10 years and the future. Journal of Power Sources, 100, 101–106. Nishi, Y. (2001). Lithium ion secondary batteries. Past 10 years and the future. Journal of Power Sources, 100, 101–106.
35.
Zurück zum Zitat Owen, J. R. (1997). Rechargeable lithium batteries. Chemical Society Reviews, 26, 259–267. Owen, J. R. (1997). Rechargeable lithium batteries. Chemical Society Reviews, 26, 259–267.
36.
Zurück zum Zitat Palacín, M. R. (2009). Recent advances in rechargeable battery materials: A chemist’s perspective. Chemical Society Reviews, 38, 2565–2575. Palacín, M. R. (2009). Recent advances in rechargeable battery materials: A chemist’s perspective. Chemical Society Reviews, 38, 2565–2575.
37.
Zurück zum Zitat Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195, 2419–2430. Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195, 2419–2430.
38.
Zurück zum Zitat Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367. Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367.
39.
Zurück zum Zitat Harks, P. P. R. M. L., Mulder, F. M., & Notten, P. H. L. (2015). In-situ methods for Li-ion battery research: A review of recent developments. Journal of power sources, 288, 92–105. Harks, P. P. R. M. L., Mulder, F. M., & Notten, P. H. L. (2015). In-situ methods for Li-ion battery research: A review of recent developments. Journal of power sources, 288, 92–105.
40.
Zurück zum Zitat Kearley, G. J., & Peterson, V. K. (2015). Neutron applications in materials for energy. Berlin: Springer. Kearley, G. J., & Peterson, V. K. (2015). Neutron applications in materials for energy. Berlin: Springer.
41.
Zurück zum Zitat Hansen, T. C., Kohlmann, H., & Anorg, Z. (2014). Chemical reactions followed by in-situ neutron powder diffraction. Allgemeine Chemie, 640, 3044–3063. Hansen, T. C., Kohlmann, H., & Anorg, Z. (2014). Chemical reactions followed by in-situ neutron powder diffraction. Allgemeine Chemie, 640, 3044–3063.
42.
Zurück zum Zitat Biendicho, J. J., Roberts, M., Offer, C., Noréus, D., Widenkvist, E., Smith, R. I., et al. (2014). New in-situ neutron diffraction cell for electrode materials. Journal of Power Sources, 248, 900–904. Biendicho, J. J., Roberts, M., Offer, C., Noréus, D., Widenkvist, E., Smith, R. I., et al. (2014). New in-situ neutron diffraction cell for electrode materials. Journal of Power Sources, 248, 900–904.
43.
Zurück zum Zitat Gummow, R. J., de Kock, A., & Thackeray, M. M. (1994). Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cells. Solid State Ionics, 69, 59–67. Gummow, R. J., de Kock, A., & Thackeray, M. M. (1994). Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cells. Solid State Ionics, 69, 59–67.
44.
Zurück zum Zitat Guyomard, D., & Tarascon, J. M. (1992). Li metal free rechargeable LiMn2O4/Carbon cells: Their understanding and optimization. Journal of the Electrochemical Society, 139, 937–948. Guyomard, D., & Tarascon, J. M. (1992). Li metal free rechargeable LiMn2O4/Carbon cells: Their understanding and optimization. Journal of the Electrochemical Society, 139, 937–948.
45.
Zurück zum Zitat Guyomard, D., & Tarascon, J. M. (1994). The carbon/Li1+x Mn2O4 system. Solid State Ionics, 69, 222–237. Guyomard, D., & Tarascon, J. M. (1994). The carbon/Li1+x Mn2O4 system. Solid State Ionics, 69, 222–237.
46.
Zurück zum Zitat Tarascon, J. M., & Guyomard, D. (1991). Li metal free rechargeable batteries based on Li1+x Mn2O4 cathodes (0≤x≤1 and carbon anodes. Journal of the Electrochemical Society, 138, 2864–2868. Tarascon, J. M., & Guyomard, D. (1991). Li metal free rechargeable batteries based on Li1+x Mn2O4 cathodes (0≤x≤1 and carbon anodes. Journal of the Electrochemical Society, 138, 2864–2868.
47.
Zurück zum Zitat Tarascon, J. M., & Guyomard, D. (1993). The Li1+x Mn2O4/C rocking chair system: A review. Electrochimica Acta, 38, 1221–1231. Tarascon, J. M., & Guyomard, D. (1993). The Li1+x Mn2O4/C rocking chair system: A review. Electrochimica Acta, 38, 1221–1231.
48.
Zurück zum Zitat Tarascon, J. M., Wang, E., Shokoohi, F. K., McKinnon, W. R., & Colson, S. (1991). The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. Journal of the Electrochemical Society, 138, 2859–2864. Tarascon, J. M., Wang, E., Shokoohi, F. K., McKinnon, W. R., & Colson, S. (1991). The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. Journal of the Electrochemical Society, 138, 2859–2864.
49.
Zurück zum Zitat Thackeray, M. M. (1995). Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. Journal of the Electrochemical Society, 142, 2558–2563. Thackeray, M. M. (1995). Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. Journal of the Electrochemical Society, 142, 2558–2563.
50.
Zurück zum Zitat Thackeray, M. M. (1997). Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 25, 1–71. Thackeray, M. M. (1997). Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 25, 1–71.
51.
Zurück zum Zitat Thackeray, M. M. (1999). Spinel electrodes for lithium batteries. Journal of the American Ceramic Society, 82, 3347–3354. Thackeray, M. M. (1999). Spinel electrodes for lithium batteries. Journal of the American Ceramic Society, 82, 3347–3354.
52.
Zurück zum Zitat Thackeray, M. M., de Kock, A., Rossouw, M. H., Liles, D., Bittihn, R., & Hoge, D. (1992). Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications. Journal of the Electrochemical Society, 139, 363–366. Thackeray, M. M., de Kock, A., Rossouw, M. H., Liles, D., Bittihn, R., & Hoge, D. (1992). Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications. Journal of the Electrochemical Society, 139, 363–366.
53.
Zurück zum Zitat Thackeray, M. M., Johnson, P. J., de Picciotto, L. A., Bruce, P. G., & Goodenough, J. B. (1984). Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin, 19, 179–187. Thackeray, M. M., Johnson, P. J., de Picciotto, L. A., Bruce, P. G., & Goodenough, J. B. (1984). Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin, 19, 179–187.
54.
Zurück zum Zitat Bergstöm, Ö., Andersson, A. M., Edström, K., & Gustafsson, T. (1998). A neutron diffraction cell for studying lithium-insertion processes in electrode materials. Journal of Applied Crystallography, 31, 823–825. Bergstöm, Ö., Andersson, A. M., Edström, K., & Gustafsson, T. (1998). A neutron diffraction cell for studying lithium-insertion processes in electrode materials. Journal of Applied Crystallography, 31, 823–825.
55.
Zurück zum Zitat Berg, H., Rundlöv, H., & Thomas, J. O. (2001). The LiMn2O4 to λ-MnO2 phase transition studied by in-situ neutron diffraction. Solid State Ionics, 144, 65–69. Berg, H., Rundlöv, H., & Thomas, J. O. (2001). The LiMn2O4 to λ-MnO2 phase transition studied by in-situ neutron diffraction. Solid State Ionics, 144, 65–69.
56.
Zurück zum Zitat Berg, H., & Thomas, J. O. (1999). Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel. Solid State Ionics, 126, 227–234. Berg, H., & Thomas, J. O. (1999). Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel. Solid State Ionics, 126, 227–234.
57.
Zurück zum Zitat Bianchini, M., Leriche, J. B., Laborier, J.-L., Gendrin, L., Suard, E., Croguennec, L., et al. (2013). A new null matrix electrochemical cell for Rietveld refinements of in-situ or operando neutron powder diffraction data. Journal of the Electrochemical Society, 160, A2176–A2183. Bianchini, M., Leriche, J. B., Laborier, J.-L., Gendrin, L., Suard, E., Croguennec, L., et al. (2013). A new null matrix electrochemical cell for Rietveld refinements of in-situ or operando neutron powder diffraction data. Journal of the Electrochemical Society, 160, A2176–A2183.
58.
Zurück zum Zitat Bianchini, M., Suard, E., Croguennec, L., & Masquelier, C. (2014). Li-rich Li1+x Mn2−x O4 spinel electrode materials: An operando neutron diffraction study during Li+ extraction/insertion. Journal of Physical Chemistry C, 118, 25947–25955. Bianchini, M., Suard, E., Croguennec, L., & Masquelier, C. (2014). Li-rich Li1+x Mn2−x O4 spinel electrode materials: An operando neutron diffraction study during Li+ extraction/insertion. Journal of Physical Chemistry C, 118, 25947–25955.
59.
Zurück zum Zitat Vadlamani, B., An, K., Jagannathan, M., & Ravi Chandran, K. S. (2014). An in-situ electrochemical cell for neutron diffraction studies of phase transitions in small volume electrodes of Li-ion batteries. Journal of the Electrochemical Society, 161, A1731–A1741. Vadlamani, B., An, K., Jagannathan, M., & Ravi Chandran, K. S. (2014). An in-situ electrochemical cell for neutron diffraction studies of phase transitions in small volume electrodes of Li-ion batteries. Journal of the Electrochemical Society, 161, A1731–A1741.
60.
Zurück zum Zitat Sharma, N., Reddy, M. V., Du, G. D., Adams, S., Chowdari, B. V. R., Guo, Z. P., et al. (2011). Time dependent in-situ neutron diffraction investigation of a Li(Co0.16Mn1.84)O4 cathode. Journal of Physical Chemistry C, 115, 21473–21480. Sharma, N., Reddy, M. V., Du, G. D., Adams, S., Chowdari, B. V. R., Guo, Z. P., et al. (2011). Time dependent in-situ neutron diffraction investigation of a Li(Co0.16Mn1.84)O4 cathode. Journal of Physical Chemistry C, 115, 21473–21480.
61.
Zurück zum Zitat Pang, W. K., Sharma, N., Peterson, V. K., Shiu, J.-J., & Wu, S.-H. (2014). In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode in a LiNi0.5Mn1.5O4║Li4Ti5O12 full cell. Journal of Power Sources, 246, 464–472. Pang, W. K., Sharma, N., Peterson, V. K., Shiu, J.-J., & Wu, S.-H. (2014). In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode in a LiNi0.5Mn1.5O4║Li4Ti5O12 full cell. Journal of Power Sources, 246, 464–472.
62.
Zurück zum Zitat Bronger, W., Bade, H., Klemm, W., & Anorg, Z. (1964). Note on the alkali metal nickelates. Allgemeine Chemie, 333, 188–200. Bronger, W., Bade, H., Klemm, W., & Anorg, Z. (1964). Note on the alkali metal nickelates. Allgemeine Chemie, 333, 188–200.
63.
Zurück zum Zitat Broussely, M., Perton, F., Biensan, P., Bodet, J. M., Labat, J., Lecerf, A., et al. (1995). Li x NiO2, a promising cathode for rechargeable lithium batteries. Journal of Power Sources, 54, 109–114. Broussely, M., Perton, F., Biensan, P., Bodet, J. M., Labat, J., Lecerf, A., et al. (1995). Li x NiO2, a promising cathode for rechargeable lithium batteries. Journal of Power Sources, 54, 109–114.
64.
Zurück zum Zitat Dahn, J. R., von Sacken, U., & Michal, C. A. (1990). Structure and electrochemistry of Li1±y NiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics, 44, 87–97. Dahn, J. R., von Sacken, U., & Michal, C. A. (1990). Structure and electrochemistry of Liy NiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics, 44, 87–97.
65.
Zurück zum Zitat Dyer, L. D., Borie, B. S., & Smith, G. P. (1954). Alkali metal nickel oxides of the type MNiO2. Journal of the American Chemical Society, 76, 1499–1503. Dyer, L. D., Borie, B. S., & Smith, G. P. (1954). Alkali metal nickel oxides of the type MNiO2. Journal of the American Chemical Society, 76, 1499–1503.
66.
Zurück zum Zitat Ebner, W., Fouchard, D., & Xie, L. (1994). The LiNiO2/carbon lithium-ion battery. Solid State Ionics, 69, 238–256. Ebner, W., Fouchard, D., & Xie, L. (1994). The LiNiO2/carbon lithium-ion battery. Solid State Ionics, 69, 238–256.
67.
Zurück zum Zitat Goodenough, J. B., Wickham, D. G., & Croft, W. J. (1958). Some magnetic and crystallographic properties of the system Li x +Ni1−2x ++Ni x +++O. Journal of Physics and Chemistry of Solids, 5, 107–116. Goodenough, J. B., Wickham, D. G., & Croft, W. J. (1958). Some magnetic and crystallographic properties of the system Li x +Ni1−2x ++Ni x +++O. Journal of Physics and Chemistry of Solids, 5, 107–116.
68.
Zurück zum Zitat Ohzuku, T., Ueda, A., & Nagayama, M. (1993). Electrochemistry and structural chemistry of LiNiO2 (R-3m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society, 140, 1862–1870. Ohzuku, T., Ueda, A., & Nagayama, M. (1993). Electrochemistry and structural chemistry of LiNiO2 (R-3m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society, 140, 1862–1870.
69.
Zurück zum Zitat Thomas, M. G. S. R., David, W. I. F., Goodenough, J. B., & Groves, P. (1985). Synthesis and structural characterisation of the normal spinel LiNi2O4. Materials Research Bulletin, 20, 1137–1146. Thomas, M. G. S. R., David, W. I. F., Goodenough, J. B., & Groves, P. (1985). Synthesis and structural characterisation of the normal spinel LiNi2O4. Materials Research Bulletin, 20, 1137–1146.
70.
Zurück zum Zitat Rosciano, F., Holzapfel, M., Scheifele, W., & Novák, P. (2008). A novel electrochemical cell for in-situ neutron diffraction studies of electrode materials for lithium-ion batteries. Journal of Applied Crystallography, 41, 690–694. Rosciano, F., Holzapfel, M., Scheifele, W., & Novák, P. (2008). A novel electrochemical cell for in-situ neutron diffraction studies of electrode materials for lithium-ion batteries. Journal of Applied Crystallography, 41, 690–694.
71.
Zurück zum Zitat Amatucci, G. G., Tarascon, J. M., & Klein, L. C. (1996). CoO2, the end member of the Li x CoO2 solid solution. Journal of the Electrochemical Society, 143, 1114–1123. Amatucci, G. G., Tarascon, J. M., & Klein, L. C. (1996). CoO2, the end member of the Li x CoO2 solid solution. Journal of the Electrochemical Society, 143, 1114–1123.
72.
Zurück zum Zitat Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). Li x CoO2 (0<x≤1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15, 783–789. Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). Li x CoO2 (0<x≤1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15, 783–789.
73.
Zurück zum Zitat Ohzuku, T., & Ueda, A. (1994). Solid state redox reactions of LiCoO2 (R-3m) for 4 volt secondary cells. Journal of the Electrochemical Society, 141, 2972–2977. Ohzuku, T., & Ueda, A. (1994). Solid state redox reactions of LiCoO2 (R-3m) for 4 volt secondary cells. Journal of the Electrochemical Society, 141, 2972–2977.
74.
Zurück zum Zitat Ohzuku, T., Ueda, A., & Kouguchi, M. (1995). Synthesis and characterization of LiAl1/4Ni3/4O2 (R-3m) for lithium-ion (shuttlecock) batteries. Journal of the Electrochemical Society, 142, 4033–4039. Ohzuku, T., Ueda, A., & Kouguchi, M. (1995). Synthesis and characterization of LiAl1/4Ni3/4O2 (R-3m) for lithium-ion (shuttlecock) batteries. Journal of the Electrochemical Society, 142, 4033–4039.
75.
Zurück zum Zitat Reimers, J. N., & Dahn, J. R. (1992). Electrochemical and in-situ X-ray diffraction studies of lithium intercalation in Li x CoO2. Journal of the Electrochemical Society, 139, 2091–2097. Reimers, J. N., & Dahn, J. R. (1992). Electrochemical and in-situ X-ray diffraction studies of lithium intercalation in Li x CoO2. Journal of the Electrochemical Society, 139, 2091–2097.
76.
Zurück zum Zitat Garcia, B., Barboux, P., Ribot, F., Kahn-Harari, A., Mazerolles, L., & Baffier, N. (1995). The structure of low temperature crystallized LiCoO2. Solid State Ionics, 80, 111–118. Garcia, B., Barboux, P., Ribot, F., Kahn-Harari, A., Mazerolles, L., & Baffier, N. (1995). The structure of low temperature crystallized LiCoO2. Solid State Ionics, 80, 111–118.
77.
Zurück zum Zitat Gummow, R. J., Liles, D. C., & Thackeray, M. M. (1993). Spinel versus layered structures for lithium cobalt oxide synthesised at 400°C. Materials Research Bulletin, 28, 235–246. Gummow, R. J., Liles, D. C., & Thackeray, M. M. (1993). Spinel versus layered structures for lithium cobalt oxide synthesised at 400°C. Materials Research Bulletin, 28, 235–246.
78.
Zurück zum Zitat Gummow, R. J., Liles, D. C., Thackeray, M. M., & David, W. I. F. (1993). A reinvestigation of the structures of lithium cobalt oxides with neutron diffraction data. Materials Research Bulletin, 28, 1177–1184. Gummow, R. J., Liles, D. C., Thackeray, M. M., & David, W. I. F. (1993). A reinvestigation of the structures of lithium cobalt oxides with neutron diffraction data. Materials Research Bulletin, 28, 1177–1184.
79.
Zurück zum Zitat Gummow, R. J., & Thackeray, M. M. (1992). Lithium cobalt nickel oxide cathode materials prepared at 400°C for rechargeable lithium batteries. Solid State Ionics, 53, 681–687. Gummow, R. J., & Thackeray, M. M. (1992). Lithium cobalt nickel oxide cathode materials prepared at 400°C for rechargeable lithium batteries. Solid State Ionics, 53, 681–687.
80.
Zurück zum Zitat Gummow, R. J., Thackeray, M. M., David, W. I. F., & Hull, S. (1992). Structure and electrochemistry of lithium cobalt oxide synthesized at 400°C. Materials Research Bulletin, 27, 327–337. Gummow, R. J., Thackeray, M. M., David, W. I. F., & Hull, S. (1992). Structure and electrochemistry of lithium cobalt oxide synthesized at 400°C. Materials Research Bulletin, 27, 327–337.
81.
Zurück zum Zitat Rossen, E., Reimers, J. N., & Dahn, J. R. (1993). Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ionics, 62, 53–60. Rossen, E., Reimers, J. N., & Dahn, J. R. (1993). Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ionics, 62, 53–60.
82.
Zurück zum Zitat Shao-Horn, Y., Hackney, S. A., Johnson, C. S., Kahaian, A. J., & Thackeray, M. M. (1998). Structural features of low-temperature LiCoO2 and acid-delithiated products. Journal of Solid State Chemistry, 140, 116–127. Shao-Horn, Y., Hackney, S. A., Johnson, C. S., Kahaian, A. J., & Thackeray, M. M. (1998). Structural features of low-temperature LiCoO2 and acid-delithiated products. Journal of Solid State Chemistry, 140, 116–127.
83.
Zurück zum Zitat Sharma, N., Peterson, V. K., Elcombe, M. M., Avdeev, M., Studer, A. J., Blagojevic, N., et al. (2010). Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in-situ neutron diffraction study. Journal of Power Sources, 195, 8258–8266. Sharma, N., Peterson, V. K., Elcombe, M. M., Avdeev, M., Studer, A. J., Blagojevic, N., et al. (2010). Structural changes in a commercial lithium-ion battery during electrochemical cycling: An in-situ neutron diffraction study. Journal of Power Sources, 195, 8258–8266.
84.
Zurück zum Zitat Senyshyn, A., Mühlbauer, M. J., Dolotko, O., Hofmann, M., Pirling, T., & Ehrenberg, H. (2014). Spatially resolved in-operando neutron scattering studies on Li-ion batteries. Journal of Power Sources, 245, 678–683. Senyshyn, A., Mühlbauer, M. J., Dolotko, O., Hofmann, M., Pirling, T., & Ehrenberg, H. (2014). Spatially resolved in-operando neutron scattering studies on Li-ion batteries. Journal of Power Sources, 245, 678–683.
85.
Zurück zum Zitat Senyshyn, A., Muhlbauer, M. J., Nikolowski, K., Pirling, T., & Ehrenberg, H. (2012). In-operando neutron scattering studies on Li-ion batteries. Journal of Power Sources, 203, 126–129. Senyshyn, A., Muhlbauer, M. J., Nikolowski, K., Pirling, T., & Ehrenberg, H. (2012). In-operando neutron scattering studies on Li-ion batteries. Journal of Power Sources, 203, 126–129.
86.
Zurück zum Zitat Rodriguez, M. A., Ingersoll, D., Vogel, S. C., & Williams, D. J. (2004). Simultaneous in situ neutron diffraction studies of the anode and cathode in a lithium-ion cell. Electrochemical and Solid-State Letters, 7, A8–A10. Rodriguez, M. A., Ingersoll, D., Vogel, S. C., & Williams, D. J. (2004). Simultaneous in situ neutron diffraction studies of the anode and cathode in a lithium-ion cell. Electrochemical and Solid-State Letters, 7, A8–A10.
87.
Zurück zum Zitat Dolotko, O., Senyshyn, A., Muhlbauer, M. J., Nikolowski, K., Scheiba, F., & Ehrenberg, H. (2012). Fatigue process in Li-ion cells: An in situ combined neutron diffraction and electrochemical study. Journal of the Electrochemical Society, 159, A2082–A2088. Dolotko, O., Senyshyn, A., Muhlbauer, M. J., Nikolowski, K., Scheiba, F., & Ehrenberg, H. (2012). Fatigue process in Li-ion cells: An in situ combined neutron diffraction and electrochemical study. Journal of the Electrochemical Society, 159, A2082–A2088.
88.
Zurück zum Zitat Ohzuku, T., & Makimura, Y. (2001). Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 7, 642–643. Ohzuku, T., & Makimura, Y. (2001). Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 7, 642–643.
89.
Zurück zum Zitat Thackeray, M. M., Kang, S.-H., Johnson, C. S., Vaughey, J. T., Benedek, R., & Hackney, S. A. (2007). Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry, 17, 3112–3125. Thackeray, M. M., Kang, S.-H., Johnson, C. S., Vaughey, J. T., Benedek, R., & Hackney, S. A. (2007). Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry, 17, 3112–3125.
90.
Zurück zum Zitat Lu, Z. H., & Dahn, J. R. (2002). Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. Journal of the Electrochemical Society, 149, A815–A822. Lu, Z. H., & Dahn, J. R. (2002). Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. Journal of the Electrochemical Society, 149, A815–A822.
91.
Zurück zum Zitat Johnson, C. S., Kim, J. S., Lefief, C., Li, N., Vaughey, J. T., & Thackeray, M. M. (2004). The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochemistry Communications, 6, 1085–1091. Johnson, C. S., Kim, J. S., Lefief, C., Li, N., Vaughey, J. T., & Thackeray, M. M. (2004). The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochemistry Communications, 6, 1085–1091.
92.
Zurück zum Zitat Liu, H., Fell, C. R., An, K., Cai, L., & Meng, Y. S. (2013). In-situ neutron diffraction study of the xLi2MnO3·(1−x)LiMO2 (x=0, 0.5; M=Ni, Mn, Co) layered oxide compounds during electrochemical cycling. Journal of Power Sources, 240, 772–778. Liu, H., Fell, C. R., An, K., Cai, L., & Meng, Y. S. (2013). In-situ neutron diffraction study of the xLi2MnO3·(1−x)LiMO2 (x=0, 0.5; M=Ni, Mn, Co) layered oxide compounds during electrochemical cycling. Journal of Power Sources, 240, 772–778.
93.
Zurück zum Zitat Dolotko, O., Senyshyn, A., Mühlbauer, M. J., Nikolowski, K., & Ehrenberg, H. (2014). Understanding structural changes in NMC Li-ion cells by in-situ neutron diffraction. Journal of Power Sources, 255, 197–203. Dolotko, O., Senyshyn, A., Mühlbauer, M. J., Nikolowski, K., & Ehrenberg, H. (2014). Understanding structural changes in NMC Li-ion cells by in-situ neutron diffraction. Journal of Power Sources, 255, 197–203.
94.
Zurück zum Zitat Li, J., Petibon, R., Glazier, S., Sharma, N., Pang, W. K., Peterson, V. K., et al. (2015). In-situ neutron diffraction study of a high voltage Li(Ni0.42Mn0.42Co0.16)O2/graphite pouch cell. Electrochimica Acta, 180, 234–240. Li, J., Petibon, R., Glazier, S., Sharma, N., Pang, W. K., Peterson, V. K., et al. (2015). In-situ neutron diffraction study of a high voltage Li(Ni0.42Mn0.42Co0.16)O2/graphite pouch cell. Electrochimica Acta, 180, 234–240.
95.
Zurück zum Zitat Liu, H., Chen, Y., Hy, S., An, K., Venkatachalam, S., Qian, D., Zhang, M., & Meng, Y. S. (2016). Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction. Advanced Energy Materials, 1502143. Liu, H., Chen, Y., Hy, S., An, K., Venkatachalam, S., Qian, D., Zhang, M., & Meng, Y. S. (2016). Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction. Advanced Energy Materials, 1502143.
96.
Zurück zum Zitat Padhi, A. K., Nanjundaswamy, K., & Goodenough, J. B. (1997). Phospho-olivines as positive electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144, 1188–1194. Padhi, A. K., Nanjundaswamy, K., & Goodenough, J. B. (1997). Phospho-olivines as positive electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144, 1188–1194.
97.
Zurück zum Zitat Yamada, A., Hosoya, M., Chung, S. C., Kudo, Y., Hinokuma, K., Liu, K. Y., et al. (2003). Olivine-type cathodes: Achievements and problems. Journal of Power Sources, 119–121, 232–238. Yamada, A., Hosoya, M., Chung, S. C., Kudo, Y., Hinokuma, K., Liu, K. Y., et al. (2003). Olivine-type cathodes: Achievements and problems. Journal of Power Sources, 119–121, 232–238.
98.
Zurück zum Zitat Yamada, A., Koizumi, H., Nishimura, S.-I., Sonoyama, N., Kanno, R., Yonemura, M., et al. (2006). Room temperature miscibility gap in Li x FePO4. Nature Materials, 5, 357–360. Yamada, A., Koizumi, H., Nishimura, S.-I., Sonoyama, N., Kanno, R., Yonemura, M., et al. (2006). Room temperature miscibility gap in Li x FePO4. Nature Materials, 5, 357–360.
99.
Zurück zum Zitat Sharma, N., & Peterson, V. K. (2012). In-situ neutron powder diffraction studies of lithium-ion batteries. Journal of Solid State Electrochemistry, 16, 1849–1856. Sharma, N., & Peterson, V. K. (2012). In-situ neutron powder diffraction studies of lithium-ion batteries. Journal of Solid State Electrochemistry, 16, 1849–1856.
100.
Zurück zum Zitat Roberts, M., Biendicho, J. J., Hull, S., Beran, P., Gustafsson, T., Svensson, G., et al. (2013). Design of a new lithium ion battery test cell for in-situ neutron diffraction measurements. Journal of Power Sources, 226, 249–255. Roberts, M., Biendicho, J. J., Hull, S., Beran, P., Gustafsson, T., Svensson, G., et al. (2013). Design of a new lithium ion battery test cell for in-situ neutron diffraction measurements. Journal of Power Sources, 226, 249–255.
101.
Zurück zum Zitat Hu, C.-W., Sharma, N., Chiang, C.-Y., Su, H.-C., Peterson, V. K., Hsieh, H.-W., et al. (2013). Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction. Journal of Power Sources, 244, 158–163. Hu, C.-W., Sharma, N., Chiang, C.-Y., Su, H.-C., Peterson, V. K., Hsieh, H.-W., et al. (2013). Real-time investigation of the structural evolution of electrodes in a commercial lithium-ion battery containing a V-added LiFePO4 cathode using in-situ neutron powder diffraction. Journal of Power Sources, 244, 158–163.
102.
Zurück zum Zitat Bobrikov, I. A., Balagurov, A. M., Hu, C.-W., Lee, C.-H., Chen, T.-Y., Deleg, S., et al. (2014). Structural evolution of LiFePO4-based battery materials: In-situ and ex-situ time-of-flight neutron diffraction study. Journal of Power Sources, 258, 356–364. Bobrikov, I. A., Balagurov, A. M., Hu, C.-W., Lee, C.-H., Chen, T.-Y., Deleg, S., et al. (2014). Structural evolution of LiFePO4-based battery materials: In-situ and ex-situ time-of-flight neutron diffraction study. Journal of Power Sources, 258, 356–364.
103.
Zurück zum Zitat Sharma, N., & Peterson, V. K. (2013). Overcharging a lithium-ion battery: Effect on the Li x C6 negative electrode determined by in-situ neutron diffraction. Journal of Power Sources, 244, 695–701. Sharma, N., & Peterson, V. K. (2013). Overcharging a lithium-ion battery: Effect on the Li x C6 negative electrode determined by in-situ neutron diffraction. Journal of Power Sources, 244, 695–701.
104.
Zurück zum Zitat Sharma, N., & Peterson, V. K. (2013). Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction. Electrochimica Acta, 101, 79–85. Sharma, N., & Peterson, V. K. (2013). Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction. Electrochimica Acta, 101, 79–85.
105.
Zurück zum Zitat Senyshyn, A., Dolotko, O., Muehlbauer, M. J., Nikolowski, K., Fuess, H., & Ehrenberg, H. (2013). Lithium intercalation into graphitic carbons revisited: Experimental evidence for twisted bilayer behavior. Journal of the Electrochemical Society, 160, A3198–A3205. Senyshyn, A., Dolotko, O., Muehlbauer, M. J., Nikolowski, K., Fuess, H., & Ehrenberg, H. (2013). Lithium intercalation into graphitic carbons revisited: Experimental evidence for twisted bilayer behavior. Journal of the Electrochemical Society, 160, A3198–A3205.
106.
Zurück zum Zitat Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B., & Tarascon, J. M. (2006). Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochemistry communications, 8, 1639–1649. Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B., & Tarascon, J. M. (2006). Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochemistry communications, 8, 1639–1649.
107.
Zurück zum Zitat Li, Z., Huang, J., Liaw, B. Y., Metzler, V., & Zhang, J. (2014). A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources, 254, 168–182. Li, Z., Huang, J., Liaw, B. Y., Metzler, V., & Zhang, J. (2014). A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources, 254, 168–182.
108.
Zurück zum Zitat Steiger, J., Kramer, D., & Moenig, R. (2014). Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. Journal of Power Sources, 261, 112–119. Steiger, J., Kramer, D., & Moenig, R. (2014). Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. Journal of Power Sources, 261, 112–119.
109.
Zurück zum Zitat Zinth, V., von Lüders, C., Hofmann, M., Hattendorff, J., Buchberger, I., Erhard, S., et al. (2014). Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in-situ neutron diffraction. Journal of Power Sources, 271, 152–159. Zinth, V., von Lüders, C., Hofmann, M., Hattendorff, J., Buchberger, I., Erhard, S., et al. (2014). Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in-situ neutron diffraction. Journal of Power Sources, 271, 152–159.
110.
Zurück zum Zitat Ohzuku, T., Ueda, A., & Yamamoto, N. (1995). Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. Journal of the Electrochemical Society, 142, 1431–1435. Ohzuku, T., Ueda, A., & Yamamoto, N. (1995). Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. Journal of the Electrochemical Society, 142, 1431–1435.
111.
Zurück zum Zitat Scharner, S., Weppner, W., & Schmid-Beurmann, P. (1999). Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. Journal of the Electrochemical Society, 146, 857–861. Scharner, S., Weppner, W., & Schmid-Beurmann, P. (1999). Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. Journal of the Electrochemical Society, 146, 857–861.
112.
Zurück zum Zitat Colin, J. F., Godbole, V., & Novak, P. (2010). In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry communications, 12, 804–807. Colin, J. F., Godbole, V., & Novak, P. (2010). In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry communications, 12, 804–807.
113.
Zurück zum Zitat Pang, W. K., & Peterson, V. K. (2015). A custom battery for operando neutron powder diffraction studies of electrode structure. Journal of Applied Crystallography, 48, 280–290. Pang, W. K., & Peterson, V. K. (2015). A custom battery for operando neutron powder diffraction studies of electrode structure. Journal of Applied Crystallography, 48, 280–290.
114.
Zurück zum Zitat Pang, W. K., Peterson, V. K., Sharma, N., Shiu, J.-J., & Wu, S.-H. (2014). Lithium migration in Li4Ti5O12 studies using in-situ neutron powder diffraction. Chemistry of Materials, 26, 2318–2326. Pang, W. K., Peterson, V. K., Sharma, N., Shiu, J.-J., & Wu, S.-H. (2014). Lithium migration in Li4Ti5O12 studies using in-situ neutron powder diffraction. Chemistry of Materials, 26, 2318–2326.
115.
Zurück zum Zitat Du, G. D., Sharma, N., Peterson, V. K., Kimpton, J. A., Jia, D. Z., & Guo, Z. P. (2011). Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: Synchrotron X-ray and in situ neutron diffraction studies. Advanced Functional Materials, 21, 3990–3997. Du, G. D., Sharma, N., Peterson, V. K., Kimpton, J. A., Jia, D. Z., & Guo, Z. P. (2011). Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: Synchrotron X-ray and in situ neutron diffraction studies. Advanced Functional Materials, 21, 3990–3997.
116.
Zurück zum Zitat Latroche, M., Chabre, Y., Percheron-Guégan, A., Isnard, O., & Knosp, B. (2002). Influence of stoichiometry and composition on the structural and electrochemical properties of AB5+y -based alloys used as negative electrode materials in Ni-MH batteries. Journal of Alloys and Compounds, 330, 787–791. Latroche, M., Chabre, Y., Percheron-Guégan, A., Isnard, O., & Knosp, B. (2002). Influence of stoichiometry and composition on the structural and electrochemical properties of AB5+y -based alloys used as negative electrode materials in Ni-MH batteries. Journal of Alloys and Compounds, 330, 787–791.
117.
Zurück zum Zitat Latroche, M., Chabre, Y., Decamps, B., Percheron-Guégan, A., & Noreus, D. (2002). In situ neutron diffraction study of the kinetics of metallic hydride electrodes. Journal of Alloys and Compounds, 334, 267–276. Latroche, M., Chabre, Y., Decamps, B., Percheron-Guégan, A., & Noreus, D. (2002). In situ neutron diffraction study of the kinetics of metallic hydride electrodes. Journal of Alloys and Compounds, 334, 267–276.
118.
Zurück zum Zitat Biendicho, J. J., Roberts, M., Noréus, D., Lagerqvist, U., Smith, R. I., Svensson, G., et al. (2015). In-situ investigation of commercial Ni(OH)2 and LaNi5-based electrodes by neutron powder diffraction. Journal of Materials Research, 30, 407–416. Biendicho, J. J., Roberts, M., Noréus, D., Lagerqvist, U., Smith, R. I., Svensson, G., et al. (2015). In-situ investigation of commercial Ni(OH)2 and LaNi5-based electrodes by neutron powder diffraction. Journal of Materials Research, 30, 407–416.
119.
Zurück zum Zitat Vivet, S., Latroche, M., Chabre, Y., Joubert, J. M., Knosp, B., & Percheron-Guégan, A. (2005). Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials. Physica B, 362, 199–207. Vivet, S., Latroche, M., Chabre, Y., Joubert, J. M., Knosp, B., & Percheron-Guégan, A. (2005). Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials. Physica B, 362, 199–207.
120.
Zurück zum Zitat O’Hayre, R., Cha, S.-W., Colella, W., & Prinz, F. B. (2009). Fuel cell fundamentals. New York: Wiley. O’Hayre, R., Cha, S.-W., Colella, W., & Prinz, F. B. (2009). Fuel cell fundamentals. New York: Wiley.
121.
Zurück zum Zitat Revankar, S. T., & Majumdar, P. (2014). Fuel cells: Principles, design and analysis. Boca Raton: CRC Press. Revankar, S. T., & Majumdar, P. (2014). Fuel cells: Principles, design and analysis. Boca Raton: CRC Press.
122.
Zurück zum Zitat Stolten, P., Samsun, R. C., & Garland, N. (2016). Fuel cells: Data, facts and figures. New York: Wiley VCH. Stolten, P., Samsun, R. C., & Garland, N. (2016). Fuel cells: Data, facts and figures. New York: Wiley VCH.
123.
Zurück zum Zitat Kendall, K., & Kendall, M. (2015). High temperature solid oxide fuel cells for the 21st century: Fundamentals, design and applications. Cambridge: Academic Press Inc. Kendall, K., & Kendall, M. (2015). High temperature solid oxide fuel cells for the 21st century: Fundamentals, design and applications. Cambridge: Academic Press Inc.
124.
Zurück zum Zitat Irvine, J. T. S., & Connor, P. (2014). Solid oxide fuels cells: Facts and figures: Past, present and future perspectives for SOFC technologies. Berlin: Springer. Irvine, J. T. S., & Connor, P. (2014). Solid oxide fuels cells: Facts and figures: Past, present and future perspectives for SOFC technologies. Berlin: Springer.
125.
Zurück zum Zitat Weppner, W. (1977). Electronic transport properties and electrically induced p-n junction in ZrO2+10mol%Y2O3. Journal of Solid State Chemistry, 20, 305–314. Weppner, W. (1977). Electronic transport properties and electrically induced p-n junction in ZrO2+10mol%Y2O3. Journal of Solid State Chemistry, 20, 305–314.
126.
Zurück zum Zitat Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., & Imanishai, N. (1999). Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics, 121, 133–139. Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., & Imanishai, N. (1999). Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics, 121, 133–139.
127.
Zurück zum Zitat Dixon, J. M., Lagrange, L. D., Merten, U., Miller, C. F., & Porter, J. T. (1963). Electrical resistivity of stabilized zirconia at elevated temperatures. Journal of the Electrochemical Society, 110, 276–280. Dixon, J. M., Lagrange, L. D., Merten, U., Miller, C. F., & Porter, J. T. (1963). Electrical resistivity of stabilized zirconia at elevated temperatures. Journal of the Electrochemical Society, 110, 276–280.
128.
Zurück zum Zitat Nakamura, A., & Wagner, J. B., Jr. (1986). Defect structure, ionic conductivity and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. Journal of the Electrochemical Society, 133, 1542–1548. Nakamura, A., & Wagner, J. B., Jr. (1986). Defect structure, ionic conductivity and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. Journal of the Electrochemical Society, 133, 1542–1548.
129.
Zurück zum Zitat Strickler, D. W., & Carlson, W. G. (1964). Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2. Journal of the American Ceramic Society, 47, 122–127. Strickler, D. W., & Carlson, W. G. (1964). Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2. Journal of the American Ceramic Society, 47, 122–127.
130.
Zurück zum Zitat Subbarao, E. C., & Ramakrishnan, T. V. (1979). Ionic conductivity of highly defective oxides. In: P. Vashishta, J. N. Mundy, & G. K. Shenoy (Eds.), Fast ion transport in solids (pp. 653–656). New York: Elsevier North Holland Inc. Subbarao, E. C., & Ramakrishnan, T. V. (1979). Ionic conductivity of highly defective oxides. In: P. Vashishta, J. N. Mundy, & G. K. Shenoy (Eds.), Fast ion transport in solids (pp. 653–656). New York: Elsevier North Holland Inc.
131.
Zurück zum Zitat Norberg, S. T., Hull, S., Ahmed, I., Eriksson, S. G., Marrocchelli, D., Madden, P. A., et al. (2011). Structural disorder in doped zirconias, part I: The Zr0.8Sc0.2−x Y x O1.9 (0.0≤x≤0.2) system. Chemistry of Materials, 23, 1356–1364. Norberg, S. T., Hull, S., Ahmed, I., Eriksson, S. G., Marrocchelli, D., Madden, P. A., et al. (2011). Structural disorder in doped zirconias, part I: The Zr0.8Sc0.2−x Y x O1.9 (0.0≤x≤0.2) system. Chemistry of Materials, 23, 1356–1364.
132.
Zurück zum Zitat Inaba, H., & Tagawa, H. (1996). Ceria based solid electrolytes. Solid State Ionics, 83, 1–16. Inaba, H., & Tagawa, H. (1996). Ceria based solid electrolytes. Solid State Ionics, 83, 1–16.
133.
Zurück zum Zitat Kilner, J. A. (2008). Defects and conductivity in ceria-based oxides. Chemistry Letters, 37, 1012–1015. Kilner, J. A. (2008). Defects and conductivity in ceria-based oxides. Chemistry Letters, 37, 1012–1015.
134.
Zurück zum Zitat Mogensen, M., Sammes, N. M., & Tompsett, G. A. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129, 63–94. Mogensen, M., Sammes, N. M., & Tompsett, G. A. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129, 63–94.
135.
Zurück zum Zitat Yahiro, H., Eguchi, K., & Arai, H. (1989). Electrical properties and reducibilities of ceria rare earth oxide systems and their application to solid oxide fuel cells. Solid State Ionics, 36, 71–75. Yahiro, H., Eguchi, K., & Arai, H. (1989). Electrical properties and reducibilities of ceria rare earth oxide systems and their application to solid oxide fuel cells. Solid State Ionics, 36, 71–75.
136.
Zurück zum Zitat Azad, A. M., Larose, S., & Akbar, S. A. (1994). Bismuth oxide based solid electrolytes for fuel cells. Journal Materials Science, 29, 4135–4151. Azad, A. M., Larose, S., & Akbar, S. A. (1994). Bismuth oxide based solid electrolytes for fuel cells. Journal Materials Science, 29, 4135–4151.
137.
Zurück zum Zitat Boivin, J. C., & Mairesse, G. (1998). Recent material developments in fast oxide ion conductors. Chemistry of Materials, 10, 2870–2888. Boivin, J. C., & Mairesse, G. (1998). Recent material developments in fast oxide ion conductors. Chemistry of Materials, 10, 2870–2888.
138.
Zurück zum Zitat Drache, M., Roussel, P., & Wignacourt, J. P. (2007). Structures and oxide mobility in Bi-Ln-O materials: Heritage of BiO. Chemical Reviews, 107, 80–96. Drache, M., Roussel, P., & Wignacourt, J. P. (2007). Structures and oxide mobility in Bi-Ln-O materials: Heritage of BiO. Chemical Reviews, 107, 80–96.
139.
Zurück zum Zitat Sammes, N. M., Tompsett, G. A., Näfe, H., & Aldinger, F. (1999). Bismuth based oxide electrolytes-structure and ionic conductivity. Journal of the European Ceramic Society, 19, 1801–1826. Sammes, N. M., Tompsett, G. A., Näfe, H., & Aldinger, F. (1999). Bismuth based oxide electrolytes-structure and ionic conductivity. Journal of the European Ceramic Society, 19, 1801–1826.
140.
Zurück zum Zitat Shuk, P., Wienhöfer, H.-D., Guth, U., Göpel, W., & Greenblatt, M. (1996). Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, 89, 179–196. Shuk, P., Wienhöfer, H.-D., Guth, U., Göpel, W., & Greenblatt, M. (1996). Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics, 89, 179–196.
141.
Zurück zum Zitat Haynes, R., Norberg, S. T., Eriksson, S. G., Chowdhury, M. A. H., Goodway, C. M., Howells, G. D., et al. (2010). New high temperature gas flow cell developed at ISIS. Journal of Physics: Conference Series, 251, 012090. Haynes, R., Norberg, S. T., Eriksson, S. G., Chowdhury, M. A. H., Goodway, C. M., Howells, G. D., et al. (2010). New high temperature gas flow cell developed at ISIS. Journal of Physics: Conference Series, 251, 012090.
142.
Zurück zum Zitat Hull, S., Norberg, S. T., Ahmed, I., Eriksson, S. G., Marrocchelli, D., & Madden, P. A. (2009). Oxygen vacancy ordering within anion-deficient ceria. Journal of Solid State Chemistry, 182, 2815–2821. Hull, S., Norberg, S. T., Ahmed, I., Eriksson, S. G., Marrocchelli, D., & Madden, P. A. (2009). Oxygen vacancy ordering within anion-deficient ceria. Journal of Solid State Chemistry, 182, 2815–2821.
143.
Zurück zum Zitat Burbano, M., Norberg, S. T., Hull, S., Eriksson, S. G., Marrocchelli, D., Madden, P. A., et al. (2012). Oxygen vacancy ordering and the conductivity maximum in Y2O3-doped CeO2. Chemistry of Materials, 24, 222–229. Burbano, M., Norberg, S. T., Hull, S., Eriksson, S. G., Marrocchelli, D., Madden, P. A., et al. (2012). Oxygen vacancy ordering and the conductivity maximum in Y2O3-doped CeO2. Chemistry of Materials, 24, 222–229.
144.
Zurück zum Zitat Li, Y. P., Maxey, E. R., Richardson, J. W., Ma, B. H., Lee, T. H., & Song, S. J. (2007). Oxygen non-stoichiometry and thermal-chemical expansion of Ce0.8Y0.2O1.9-δ electrolytes by neutron diffraction. Journal of the American Ceramic Society, 90, 1208–1214. Li, Y. P., Maxey, E. R., Richardson, J. W., Ma, B. H., Lee, T. H., & Song, S. J. (2007). Oxygen non-stoichiometry and thermal-chemical expansion of Ce0.8Y0.2O1.9-δ electrolytes by neutron diffraction. Journal of the American Ceramic Society, 90, 1208–1214.
145.
Zurück zum Zitat Loong, C. K., & Ozawa, M. (2000). The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control. J. Alloys Compd., 303, 60–65. Loong, C. K., & Ozawa, M. (2000). The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control. J. Alloys Compd., 303, 60–65.
146.
Zurück zum Zitat Ozawa, M., & Loong, C. K. (1999). In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts. Catalysis Today, 50, 329–342. Ozawa, M., & Loong, C. K. (1999). In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts. Catalysis Today, 50, 329–342.
147.
Zurück zum Zitat Tikekar, N. M., Armstrong, T. J., & Virkar, A. V. (2003). Reduction and re-oxidation kinetics of nickel based solid oxide fuel cell anodes. In S. C. Singhal & M. Dokiya (Eds.), Proceedings of 8th International Symposium Solid Oxide Fuel Cells (SOFC VIII) (pp. 670–679). The Electrochemical Society. Tikekar, N. M., Armstrong, T. J., & Virkar, A. V. (2003). Reduction and re-oxidation kinetics of nickel based solid oxide fuel cell anodes. In S. C. Singhal & M. Dokiya (Eds.), Proceedings of 8th International Symposium Solid Oxide Fuel Cells (SOFC VIII) (pp. 670–679). The Electrochemical Society.
148.
Zurück zum Zitat Park, S. D., Vohs, J. M., & Gorte, R. J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404, 265–267. Park, S. D., Vohs, J. M., & Gorte, R. J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404, 265–267.
149.
Zurück zum Zitat Hofer, H. E., & Kock, W. F. (1993). Crystal chemistry and thermal behavior in the La(Cr,Ni)O3 perovskite system. Journal of the Electrochemical Society, 140, 2889–2894. Hofer, H. E., & Kock, W. F. (1993). Crystal chemistry and thermal behavior in the La(Cr,Ni)O3 perovskite system. Journal of the Electrochemical Society, 140, 2889–2894.
150.
Zurück zum Zitat Jin, F. X., Endo, T., Takizawa, H., & Shimada, M. (1994). Effects of divalent cation substitution on sinterability and electrical properties of LaCrO3 ceramics. Journal of Solid State Chemistry, 113, 138–144. Jin, F. X., Endo, T., Takizawa, H., & Shimada, M. (1994). Effects of divalent cation substitution on sinterability and electrical properties of LaCrO3 ceramics. Journal of Solid State Chemistry, 113, 138–144.
151.
Zurück zum Zitat Sfeir, J., Buffat, P. A., Mockli, P., Xanthopoulos, N., Vasquez, R., Mathieu, H. J., Van Herle, J., & Thampi, J. (2001). Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. Journal of Catalysis, 202, 229–244. Sfeir, J., Buffat, P. A., Mockli, P., Xanthopoulos, N., Vasquez, R., Mathieu, H. J., Van Herle, J., & Thampi, J. (2001). Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. Journal of Catalysis, 202, 229–244.
152.
Zurück zum Zitat Sun, C., Hui, R., & Roller, J. (2010). Cathode materials for solid oxide fuel cells: A review. Journal of Solid State Electrochemistry, 14, 1125–1144. Sun, C., Hui, R., & Roller, J. (2010). Cathode materials for solid oxide fuel cells: A review. Journal of Solid State Electrochemistry, 14, 1125–1144.
153.
Zurück zum Zitat Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. I. Performance determining factors. Journal of Solid State Electrochemistry, 12, 1039–1060. Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. I. Performance determining factors. Journal of Solid State Electrochemistry, 12, 1039–1060.
154.
Zurück zum Zitat Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. II. Electrochemical behaviour vs. materials science aspects. Journal of Solid State Electrochemistry, 12, 1367–1391. Tsipis, E. V., & Kharton, V. V. (2008). Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. II. Electrochemical behaviour vs. materials science aspects. Journal of Solid State Electrochemistry, 12, 1367–1391.
155.
Zurück zum Zitat Tedmon, C. S., Spacil, H. S., & Mitoff, S. P. (1969). Cathode materials and performance in high temperature zirconia electrolyte fuel cells. Journal of the Electrochemical Society, 116, 1170–1175. Tedmon, C. S., Spacil, H. S., & Mitoff, S. P. (1969). Cathode materials and performance in high temperature zirconia electrolyte fuel cells. Journal of the Electrochemical Society, 116, 1170–1175.
156.
Zurück zum Zitat Tonus, F., Bahout, M., Battle, P. D., Hansen, T., Henry, P. F., & Roisnel, T. (2010). In-situ neutron diffraction study of the high temperature redox chemistry of Ln3−x Sr1+x CrNiO8−δ (Ln=La,Nd) under hydrogen. Journal of Materials Chemistry, 20, 4103–4115. Tonus, F., Bahout, M., Battle, P. D., Hansen, T., Henry, P. F., & Roisnel, T. (2010). In-situ neutron diffraction study of the high temperature redox chemistry of Ln3−x Sr1+x CrNiO8−δ (Ln=La,Nd) under hydrogen. Journal of Materials Chemistry, 20, 4103–4115.
157.
Zurück zum Zitat Haag, J. M., Barnett, S. A., Richardson, J. W., Jr., & Poeppelmeier, K. R. (2010). Structural and chemical evolution of the SOFC anode La0.30Sr0.70Fe0.70Cr0.30O3−δ upon reduction and oxidation: An in-situ neutron diffraction study. Chemistry of Materials, 22, 3283–3289. Haag, J. M., Barnett, S. A., Richardson, J. W., Jr., & Poeppelmeier, K. R. (2010). Structural and chemical evolution of the SOFC anode La0.30Sr0.70Fe0.70Cr0.30O3−δ upon reduction and oxidation: An in-situ neutron diffraction study. Chemistry of Materials, 22, 3283–3289.
158.
Zurück zum Zitat Tonus, F., & Skinner, S. J. (2016). In-situ neutron diffraction study of cathode/electrolyte interactions under electrical load and elevated temperature. Solid State Sciences, 55, 88–92. Tonus, F., & Skinner, S. J. (2016). In-situ neutron diffraction study of cathode/electrolyte interactions under electrical load and elevated temperature. Solid State Sciences, 55, 88–92.
159.
Zurück zum Zitat Tonus, F., Greaves, C., El Shinawi, H., Hansen, T., Hernandez, O., Battle, P. D., et al. (2011). High temperature redox chemistry of La1.5+x Sr0.5−x Co0.5Ni0.5O4+δ (x=0.0,0.2) studied in-situ by neutron diffraction. Journal of Materials Chemistry, 21, 7111–7122. Tonus, F., Greaves, C., El Shinawi, H., Hansen, T., Hernandez, O., Battle, P. D., et al. (2011). High temperature redox chemistry of La1.5+x Sr0.5−x Co0.5Ni0.5O4+δ (x=0.0,0.2) studied in-situ by neutron diffraction. Journal of Materials Chemistry, 21, 7111–7122.
160.
Zurück zum Zitat Bahout, M., Tonus, F., Prestipino, D., Pelloquin, D., Hansen, T., Fonda, E., et al. (2012). High temperature redox chemistry of Pr0.5Sr1.5Cr0.5Mn0.5O4−δ investigated in-situ by neutron diffraction and X-ray absorption spectroscopy under reducing and oxidizing gas flows. Journal of Materials Chemistry, 22, 10560–10570. Bahout, M., Tonus, F., Prestipino, D., Pelloquin, D., Hansen, T., Fonda, E., et al. (2012). High temperature redox chemistry of Pr0.5Sr1.5Cr0.5Mn0.5O4−δ investigated in-situ by neutron diffraction and X-ray absorption spectroscopy under reducing and oxidizing gas flows. Journal of Materials Chemistry, 22, 10560–10570.
161.
Zurück zum Zitat Cox-Galhotra, R. A., Huq, A., Hodges, J. P., Yu, C., Wang, X., Gong, W., et al. (2013). An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5+δ at high temperature and controlled oxygen partial pressure. Solid State Ionics, 249–250, 34–40. Cox-Galhotra, R. A., Huq, A., Hodges, J. P., Yu, C., Wang, X., Gong, W., et al. (2013). An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5+δ at high temperature and controlled oxygen partial pressure. Solid State Ionics, 249–250, 34–40.
162.
Zurück zum Zitat Cox-Galhotra, R. A., Huq, A., Hodges, J. P., Kim, J.-H., Yu, C., Wang, X., et al. (2013). Visualizing oxygen anion transport pathways in NdBaCo2O5+δ by in-situ neutron diffraction. Journal of Materials Chemistry A, 1, 3091–3100. Cox-Galhotra, R. A., Huq, A., Hodges, J. P., Kim, J.-H., Yu, C., Wang, X., et al. (2013). Visualizing oxygen anion transport pathways in NdBaCo2O5+δ by in-situ neutron diffraction. Journal of Materials Chemistry A, 1, 3091–3100.
163.
Zurück zum Zitat Broux, T., Prestipino, C., Bahout, M., Hernandez, O., Swain, D., Paofai, S., et al. (2013). Unprecedented high solubility of oxygen interstitial defects in La1.2Sr0.8MnO4+δ up to δ~0.42 revealed by in-situ high temperature neutron powder diffraction in flowing O2. Chemistry of Materials, 25, 4053–4063. Broux, T., Prestipino, C., Bahout, M., Hernandez, O., Swain, D., Paofai, S., et al. (2013). Unprecedented high solubility of oxygen interstitial defects in La1.2Sr0.8MnO4+δ up to δ~0.42 revealed by in-situ high temperature neutron powder diffraction in flowing O2. Chemistry of Materials, 25, 4053–4063.
164.
Zurück zum Zitat Skinner, S. J. (2003). Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sciences, 5, 419–426. Skinner, S. J. (2003). Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sciences, 5, 419–426.
165.
Zurück zum Zitat Tomkiewicz, A. C., Tamimi, M. A., Huq, A., & McIntosh, S. (2013). Evidence for the low oxygen stoichiometry of cubic Ba0.5Sr0.5Co0.5Fe0.5O3−δ from in-situ neutron diffraction. Solid State Ionics, 253, 27–31. Tomkiewicz, A. C., Tamimi, M. A., Huq, A., & McIntosh, S. (2013). Evidence for the low oxygen stoichiometry of cubic Ba0.5Sr0.5Co0.5Fe0.5O3−δ from in-situ neutron diffraction. Solid State Ionics, 253, 27–31.
166.
Zurück zum Zitat McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A., & Bouwmeester, H. J. M. (2006). Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−δ measured by in situ neutron diffraction. Chemistry of Materials, 18, 2187–2193. McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A., & Bouwmeester, H. J. M. (2006). Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−δ measured by in situ neutron diffraction. Chemistry of Materials, 18, 2187–2193.
167.
Zurück zum Zitat Wright, J. H., Virkar, A. V., Liu, Q., & Chen, F. (2013). Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode. Journal of Power Sources, 237, 13–18. Wright, J. H., Virkar, A. V., Liu, Q., & Chen, F. (2013). Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode. Journal of Power Sources, 237, 13–18.
168.
Zurück zum Zitat Xiao, G., Liu, Q., Wang, S., Komvokis, V. G., Amiridis, M. D., Heyden, A., et al. (2012). Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells. Journal of Power Sources, 202, 63–69. Xiao, G., Liu, Q., Wang, S., Komvokis, V. G., Amiridis, M. D., Heyden, A., et al. (2012). Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells. Journal of Power Sources, 202, 63–69.
169.
Zurück zum Zitat Bugaris, D. E., Hodges, J. P., Huq, A., Chance, W. M., Heyden, A., Chen, F., & zur Loye, H.-C. (2014). Investigation of the high temperature redox chemistry of Sr2Fe1.5Mo0.5O6−δ via in-situ neutron diffraction. Journal of Materials Chemistry A, 2, 4045–4054. Bugaris, D. E., Hodges, J. P., Huq, A., Chance, W. M., Heyden, A., Chen, F., & zur Loye, H.-C. (2014). Investigation of the high temperature redox chemistry of Sr2Fe1.5Mo0.5O6−δ via in-situ neutron diffraction. Journal of Materials Chemistry A, 2, 4045–4054.
170.
Zurück zum Zitat Li, Y. P., Maxey, E. R., & Richardson, J. W. (2005). Structural behavior of oxygen permeable SrFe0.2Co0.8O x ceramic membranes with and without pO2 gradients. Journal of the American Ceramic Society, 88, 1244–1252. Li, Y. P., Maxey, E. R., & Richardson, J. W. (2005). Structural behavior of oxygen permeable SrFe0.2Co0.8O x ceramic membranes with and without pO2 gradients. Journal of the American Ceramic Society, 88, 1244–1252.
171.
Zurück zum Zitat Alberti, G., & Casciola, M. (2001). Solid state protonic conductors, present main applications and future prospects. Solid State Ionics, 145, 3–16. Alberti, G., & Casciola, M. (2001). Solid state protonic conductors, present main applications and future prospects. Solid State Ionics, 145, 3–16.
172.
Zurück zum Zitat Norby, T. (1999). Solid-state protonic conductors: Principles, properties, progress and prospects. Solid State Ionics, 125, 1–11. Norby, T. (1999). Solid-state protonic conductors: Principles, properties, progress and prospects. Solid State Ionics, 125, 1–11.
173.
Zurück zum Zitat Karlsson, M. (2013). Perspectives of neutron scattering on proton conducting oxides. Dalton Transactions, 42, 317–329. Karlsson, M. (2013). Perspectives of neutron scattering on proton conducting oxides. Dalton Transactions, 42, 317–329.
174.
Zurück zum Zitat Andersson, A. K. E., Selbach, S. M., Grande, T., & Knee, C. S. (2015). Thermal evolution of the crystal structure of proton conducting BaCe0.8Y0.2O3−δ from high resolution neutron diffraction in dry and humid atmosphere. Dalton Transactions, 44, 10834–10846. Andersson, A. K. E., Selbach, S. M., Grande, T., & Knee, C. S. (2015). Thermal evolution of the crystal structure of proton conducting BaCe0.8Y0.2O3−δ from high resolution neutron diffraction in dry and humid atmosphere. Dalton Transactions, 44, 10834–10846.
175.
Zurück zum Zitat Bahout, M., Pramana, S. S., Hanlon, J. M., Dorcet, V., Smith, R. I., Paofai, S., et al. (2015). Stability of NdBaCo2−x Mn x O5+δ (x=0,0.5) layered perovskites under humid conditions investigated by high temperature in-situ neutron powder diffraction. Journal of Materials Chemistry A, 3, 15420–15431. Bahout, M., Pramana, S. S., Hanlon, J. M., Dorcet, V., Smith, R. I., Paofai, S., et al. (2015). Stability of NdBaCo2−x Mn x O5+δ (x=0,0.5) layered perovskites under humid conditions investigated by high temperature in-situ neutron powder diffraction. Journal of Materials Chemistry A, 3, 15420–15431.
176.
Zurück zum Zitat Engin, T. E., Powell, A. V., Haynes, R., Chowdhury, M. A. H., Goodway, C. M., Done, R., et al. (2008). A high temperature cell for simultaneous electrical resistance and neutron diffraction measurements. Review of Scientific Instruments, 79, 095104. Engin, T. E., Powell, A. V., Haynes, R., Chowdhury, M. A. H., Goodway, C. M., Done, R., et al. (2008). A high temperature cell for simultaneous electrical resistance and neutron diffraction measurements. Review of Scientific Instruments, 79, 095104.
177.
Zurück zum Zitat Evans, I. R., Howard, J. A. K., & Evans, J. S. O. (2005). The crystal structure of a-La2Mo2O9 and the structural origin of the oxide ion migration pathway. Chemistry of Materials, 17, 4074–4077. Evans, I. R., Howard, J. A. K., & Evans, J. S. O. (2005). The crystal structure of a-La2Mo2O9 and the structural origin of the oxide ion migration pathway. Chemistry of Materials, 17, 4074–4077.
178.
Zurück zum Zitat Georges, S., Goutenoire, F., Bohnke, O., Steil, M. C., Skinner, S. J., Wiemhofer, H. D., et al. (2004). The LAMOX family of fast oxide-ion conductors: Overview and recent results. Journal of New Materials for Electrochemical Systems, 7, 51–57. Georges, S., Goutenoire, F., Bohnke, O., Steil, M. C., Skinner, S. J., Wiemhofer, H. D., et al. (2004). The LAMOX family of fast oxide-ion conductors: Overview and recent results. Journal of New Materials for Electrochemical Systems, 7, 51–57.
179.
Zurück zum Zitat Goutenoire, F., Isnard, O., Retoux, R., & Lacorre, P. (2000). Crystal structure of La2Mo2O9, a new fast oxide-ion conductor. Chemistry of Materials, 12, 2575–2580. Goutenoire, F., Isnard, O., Retoux, R., & Lacorre, P. (2000). Crystal structure of La2Mo2O9, a new fast oxide-ion conductor. Chemistry of Materials, 12, 2575–2580.
180.
Zurück zum Zitat Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R., & Laligant, Y. (2000). Designing fast oxide-ion conductors based on La2Mo2O9. Nature, 404, 856–858. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R., & Laligant, Y. (2000). Designing fast oxide-ion conductors based on La2Mo2O9. Nature, 404, 856–858.
181.
Zurück zum Zitat Liu, J. J., Hull, S., Ahmed, I., & Skinner, S. J. (2011). Application of combined neutron diffraction and impedance spectroscopy for in-situ structure and conductivity studies of La2Mo2O9. Nuclear Instruments and Methods in Physics Research Section B, 269, 539–543. Liu, J. J., Hull, S., Ahmed, I., & Skinner, S. J. (2011). Application of combined neutron diffraction and impedance spectroscopy for in-situ structure and conductivity studies of La2Mo2O9. Nuclear Instruments and Methods in Physics Research Section B, 269, 539–543.
182.
Zurück zum Zitat Kinyanjui, F. G., Norberg, S. T., Ahmed, I., Eriksson, S. G., & Hull, S. (2012). In-situ conductivity and hydration studies of proton conductors using neutron powder diffraction. Solid State Ionics, 225, 312–316. Kinyanjui, F. G., Norberg, S. T., Ahmed, I., Eriksson, S. G., & Hull, S. (2012). In-situ conductivity and hydration studies of proton conductors using neutron powder diffraction. Solid State Ionics, 225, 312–316.
183.
Zurück zum Zitat Malavasi, L. (2011). Total scattering investigation of materials for clean energy applications: The importance of the local structure. Dalton Transactions, 40, 3777–3788. Malavasi, L. (2011). Total scattering investigation of materials for clean energy applications: The importance of the local structure. Dalton Transactions, 40, 3777–3788.
184.
Zurück zum Zitat Proffen, T., & Billinge, S. J. L. (1999). PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. Journal of Applied Crystallography, 32, 572–575. Proffen, T., & Billinge, S. J. L. (1999). PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. Journal of Applied Crystallography, 32, 572–575.
185.
Zurück zum Zitat Keen, D. A. (2000). A comparison of various commonly used correlation functions for describing total scattering. Journal of Applied Crystallography, 34, 172–177. Keen, D. A. (2000). A comparison of various commonly used correlation functions for describing total scattering. Journal of Applied Crystallography, 34, 172–177.
186.
Zurück zum Zitat Keen, D. A., Tucker, M. G., & Dove, M. T. (2005). Reverse Monte Carlo modelling of crystalline disorder. Journal of Physics: Condensed Matter, 17, S15–S22. Keen, D. A., Tucker, M. G., & Dove, M. T. (2005). Reverse Monte Carlo modelling of crystalline disorder. Journal of Physics: Condensed Matter, 17, S15–S22.
187.
Zurück zum Zitat McGreevy, R. L. (2001). Reverse Monte Carlo modelling. Journal of Physics: Condensed Matter, 13, R877–R913. McGreevy, R. L. (2001). Reverse Monte Carlo modelling. Journal of Physics: Condensed Matter, 13, R877–R913.
188.
Zurück zum Zitat McGreevy, R. L., & Pusztai, L. (1988). Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Molecular Simulation, 1, 359–367. McGreevy, R. L., & Pusztai, L. (1988). Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Molecular Simulation, 1, 359–367.
189.
Zurück zum Zitat Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L., & Hui, Q. (2007). RMCProfile: Reverse Monte Carlo for polycrystalline materials. Journal of Physics: Condensed Matter, 19, 335218. Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L., & Hui, Q. (2007). RMCProfile: Reverse Monte Carlo for polycrystalline materials. Journal of Physics: Condensed Matter, 19, 335218.
190.
Zurück zum Zitat Keen, D. A., & Goodwin, A. L. (2015). The crystallography of correlated disorder. Nature, 521, 303–309. Keen, D. A., & Goodwin, A. L. (2015). The crystallography of correlated disorder. Nature, 521, 303–309.
191.
Zurück zum Zitat Playford, H. Y., Owen, L. R., Levin, I., & Tucker, M. G. (2014). New insights into complex materials using Reverse Monte Carlo modeling. Annual Review of Materials Research, 44, 429–449. Playford, H. Y., Owen, L. R., Levin, I., & Tucker, M. G. (2014). New insights into complex materials using Reverse Monte Carlo modeling. Annual Review of Materials Research, 44, 429–449.
192.
Zurück zum Zitat Marrocchelli, D., Madden, P. A., Norberg, S. T., & Hull, S. (2011). Structural disorder in doped zirconias, part II: Vacancy ordering effects and the conductivity maximum. Chemistry of Materials, 23, 1365–1373. Marrocchelli, D., Madden, P. A., Norberg, S. T., & Hull, S. (2011). Structural disorder in doped zirconias, part II: Vacancy ordering effects and the conductivity maximum. Chemistry of Materials, 23, 1365–1373.
193.
Zurück zum Zitat Norberg, S. T., Ahmed, I., Hull, S., Marrocchelli, D., & Madden, P. A. (2009). Local structure and ionic conductivity in the Zr2Y2O7-Y3NbO7 system. Journal of Physics: Condensed Matter, 21, 215401. Norberg, S. T., Ahmed, I., Hull, S., Marrocchelli, D., & Madden, P. A. (2009). Local structure and ionic conductivity in the Zr2Y2O7-Y3NbO7 system. Journal of Physics: Condensed Matter, 21, 215401.
194.
Zurück zum Zitat Mohn, C. E., Stolen, S., Norberg, S. T., & Hull, S. (2009). Ab initio molecular dynamics simulations of oxide-ion disorder in the δ-Bi2O3. Physical Review B, 80, 024205. Mohn, C. E., Stolen, S., Norberg, S. T., & Hull, S. (2009). Ab initio molecular dynamics simulations of oxide-ion disorder in the δ-Bi2O3. Physical Review B, 80, 024205.
195.
Zurück zum Zitat Abrahams, I., Liu, X., Hull, S., Norberg, S. T., Krok, F., Kozanecka-Szmigiel, A., et al. (2010). A combined total scattering and simulation approach to analyzing defect structure in Bi3YO6. Chemistry of Materials, 22, 4435–4445. Abrahams, I., Liu, X., Hull, S., Norberg, S. T., Krok, F., Kozanecka-Szmigiel, A., et al. (2010). A combined total scattering and simulation approach to analyzing defect structure in Bi3YO6. Chemistry of Materials, 22, 4435–4445.
196.
Zurück zum Zitat Marrocchelli, D., Madden, P. A., Norberg, S. T., & Hull, S. (2009). Cation composition effects on oxide conductivity in the Zr2Y2O7-Y3NbO7 system. Journal of Physics: Condensed Matter, 21, 405403. Marrocchelli, D., Madden, P. A., Norberg, S. T., & Hull, S. (2009). Cation composition effects on oxide conductivity in the Zr2Y2O7-Y3NbO7 system. Journal of Physics: Condensed Matter, 21, 405403.
197.
Zurück zum Zitat Hannon, A. C., Howells, A. C., & Soper, A. C. (1990). ATLAS: A suite of programs for the analysis of time-of-flight neutron diffraction data from liquid and amorphous samples. Institute of Physics Conference Series, 107, 193–211 (1990). Hannon, A. C., Howells, A. C., & Soper, A. C. (1990). ATLAS: A suite of programs for the analysis of time-of-flight neutron diffraction data from liquid and amorphous samples. Institute of Physics Conference Series, 107, 193–211 (1990).
198.
Zurück zum Zitat Howe, M. A., McGreevy, R. L., & Howells, W. S. (1989). The analysis of liquid structure data from time-of-flight neutron diffractometry. Journal of Physics: Condensed Matter, 1, 3433–3451. Howe, M. A., McGreevy, R. L., & Howells, W. S. (1989). The analysis of liquid structure data from time-of-flight neutron diffractometry. Journal of Physics: Condensed Matter, 1, 3433–3451.
199.
Zurück zum Zitat Anderson, I. S., McGreevy, R., & Bilheux, H. Z. (2009). Neutron imaging and applications. A reference for the imaging community. New York, US: Springer. Anderson, I. S., McGreevy, R., & Bilheux, H. Z. (2009). Neutron imaging and applications. A reference for the imaging community. New York, US: Springer.
200.
Zurück zum Zitat Bellows, R. J., Lin, M. Y., Arif, M., Thompson, A. K., & Jacobson, D. (1999). Neutron imaging technique for in-situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 146, 1099–1103. Bellows, R. J., Lin, M. Y., Arif, M., Thompson, A. K., & Jacobson, D. (1999). Neutron imaging technique for in-situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 146, 1099–1103.
201.
Zurück zum Zitat Kramer, D., Zhang, J. B., Shimoi, R., Lehmann, E., Wokaun, A., Shinohara, K., et al. (2005). In-situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification. Electrochimica Acta, 50, 2603–2614. Kramer, D., Zhang, J. B., Shimoi, R., Lehmann, E., Wokaun, A., Shinohara, K., et al. (2005). In-situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging: Part A. Experimental, data treatment, and quantification. Electrochimica Acta, 50, 2603–2614.
202.
Zurück zum Zitat Satija, R., Jacobson, D. L., Arif, M., & Werner, S. A. (2004). In-situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells. Journal of Power Sources, 129, 238–245. Satija, R., Jacobson, D. L., Arif, M., & Werner, S. A. (2004). In-situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells. Journal of Power Sources, 129, 238–245.
203.
Zurück zum Zitat Kardjilov, N., Hilger, A., Manke, I., Strobl, M., Treimer, W., & Banhart, J. (2005). Industrial applications at the new cold neutron radiography and tomography facility of the HMI. Nuclear Instruments and Methods in Physics Research Section A, 542, 16–21. Kardjilov, N., Hilger, A., Manke, I., Strobl, M., Treimer, W., & Banhart, J. (2005). Industrial applications at the new cold neutron radiography and tomography facility of the HMI. Nuclear Instruments and Methods in Physics Research Section A, 542, 16–21.
204.
Zurück zum Zitat Burca, G., James, J. A., Kockelmann, W., Fitzpatrick, M. E., Zhang, S. Y., Hovind, J., et al. (2011). A new bridge technique for neutron tomography and diffraction measurements. Nuclear Instruments and Methods in Physics Research Section A, 651, 229–235. Burca, G., James, J. A., Kockelmann, W., Fitzpatrick, M. E., Zhang, S. Y., Hovind, J., et al. (2011). A new bridge technique for neutron tomography and diffraction measurements. Nuclear Instruments and Methods in Physics Research Section A, 651, 229–235.
205.
Zurück zum Zitat Kockelmann, W., Zhang, S. Y., Kelleher, J. F., Nightingale, J. B., Burca G., & James, J. A. (2013). IMAT—A new imaging and diffraction instrument at ISIS. In P. C. Hungler (Ed.), 7th International Topical Meeting on Neutron Radiography. Physics Procedia (Vol. 43, pp. 100–110). Kockelmann, W., Zhang, S. Y., Kelleher, J. F., Nightingale, J. B., Burca G., & James, J. A. (2013). IMAT—A new imaging and diffraction instrument at ISIS. In P. C. Hungler (Ed.), 7th International Topical Meeting on Neutron Radiography. Physics Procedia (Vol. 43, pp. 100–110).
Metadaten
Titel
In-Situ Neutron Diffraction Experiments
verfasst von
Stephen Hull
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51407-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.