Skip to main content
Erschienen in: Cellulose 3/2015

01.06.2015 | Communication

In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering

verfasst von: Johannes Thunberg, Theodoros Kalogeropoulos, Volodymyr Kuzmenko, Daniel Hägg, Sara Johannesson, Gunnar Westman, Paul Gatenholm

Erschienen in: Cellulose | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study reports the synthesis of conductive polypyrrole (PPy) on electrospun cellulose nanofibers. The cellulose nanofibers were electrospun via cellulose acetate and surface modified using in situ pyrrole polymerization. PPy adhered to the cellulose nanofiber surface as small particles and caused a 105 fold increase in conductivity compared to unmodified cellulose nanofibers. In addition, tests revealed no cytotoxic potential for the PPy coated cellulose nanofiber materials. In vitro culturing using SH-SY5Y human neuroblastoma cells indicated enhanced cell adhesion on the PPy coated cellulose material. SH-SY5Y cell viability was evident up to 15 days of differentiation and cells adhered to the PPy coated cellulose nanofibers and altered their morphology to a more neuron like phenotype.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester
Zurück zum Zitat Bendrea AD, Cianga L, Cianga I (2011) Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl 26(1):3–84CrossRef Bendrea AD, Cianga L, Cianga I (2011) Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl 26(1):3–84CrossRef
Zurück zum Zitat Biedler J, Helson L, Spengler B (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652 Biedler J, Helson L, Spengler B (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652
Zurück zum Zitat Carlsson D, Nyström G, Zhou Q, Berglund L, Nyholm L, Stromme M (2012) Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J Mater Chem 22(36):19014–19024CrossRef Carlsson D, Nyström G, Zhou Q, Berglund L, Nyholm L, Stromme M (2012) Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J Mater Chem 22(36):19014–19024CrossRef
Zurück zum Zitat Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam RHW, Macoska JA, Merajver SD, Fu J (2013) Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 7(1):566–575CrossRef Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam RHW, Macoska JA, Merajver SD, Fu J (2013) Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 7(1):566–575CrossRef
Zurück zum Zitat Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 85(1):149–156CrossRef Cooper A, Bhattarai N, Zhang M (2011) Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 85(1):149–156CrossRef
Zurück zum Zitat Das N, Choi M, Jung K, Park J, Lee H, Kim S, Chai Y (2012) Lipopolysaccharide-mediated protein expression profiling on neuronal differentiated sh-sy5y cells. BioChip J 6(2):165–173CrossRef Das N, Choi M, Jung K, Park J, Lee H, Kim S, Chai Y (2012) Lipopolysaccharide-mediated protein expression profiling on neuronal differentiated sh-sy5y cells. BioChip J 6(2):165–173CrossRef
Zurück zum Zitat Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou Y-F, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mat 3(3):034124CrossRef Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou Y-F, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mat 3(3):034124CrossRef
Zurück zum Zitat Grafahrend D, Heffels KH, Beer M, Gasteier P, Möller M, Boehm G, Dalton P, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10(1):67–73CrossRef Grafahrend D, Heffels KH, Beer M, Gasteier P, Möller M, Boehm G, Dalton P, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10(1):67–73CrossRef
Zurück zum Zitat Guimard N, Gomez N, Schmidt C (2007) Conducting polymers in biomedical engineering. Prog Polym Sci (Oxford) 32(8–9):876–921CrossRef Guimard N, Gomez N, Schmidt C (2007) Conducting polymers in biomedical engineering. Prog Polym Sci (Oxford) 32(8–9):876–921CrossRef
Zurück zum Zitat Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P (2012) Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. J Appl Polym Sci 125(3):1901–1909CrossRef Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P (2012) Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. J Appl Polym Sci 125(3):1901–1909CrossRef
Zurück zum Zitat He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15(2):618–627CrossRef He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15(2):618–627CrossRef
Zurück zum Zitat Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A 76(2):431–438CrossRef Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res Part A 76(2):431–438CrossRef
Zurück zum Zitat Jain A, Betancur M, Patel G, Valmikinathan C, Mukhatyar V, Vakharia A, Pai S, Brahma B, MacDonald T, Bellamkonda R (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater 13(3):308–316CrossRef Jain A, Betancur M, Patel G, Valmikinathan C, Mukhatyar V, Vakharia A, Pai S, Brahma B, MacDonald T, Bellamkonda R (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater 13(3):308–316CrossRef
Zurück zum Zitat Jia B, Li Y, Yang B, Xiao D, Zhang S, Rajulu A, Kondo T, Zhang L, Zhou J (2013) Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds. Cellulose 20(4):1911–1923CrossRef Jia B, Li Y, Yang B, Xiao D, Zhang S, Rajulu A, Kondo T, Zhang L, Zhou J (2013) Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds. Cellulose 20(4):1911–1923CrossRef
Zurück zum Zitat Kaynak A, Beltran R (2003) Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polym Int 52:1021–1026CrossRef Kaynak A, Beltran R (2003) Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polym Int 52:1021–1026CrossRef
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci (Oxford) 26(9):1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci (Oxford) 26(9):1561–1603CrossRef
Zurück zum Zitat Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335CrossRef Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335CrossRef
Zurück zum Zitat Li WJ, Laurencin C, Caterson E, Tuan R, Ko F (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621CrossRef Li WJ, Laurencin C, Caterson E, Tuan R, Ko F (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621CrossRef
Zurück zum Zitat Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B: Polym Phys 40(18):2119–2129CrossRef Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B: Polym Phys 40(18):2119–2129CrossRef
Zurück zum Zitat Liu X, Gilmore KJ, Moulton SE, Wallace GG (2009) Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. J Neural Eng 6(6):065,002CrossRef Liu X, Gilmore KJ, Moulton SE, Wallace GG (2009) Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. J Neural Eng 6(6):065,002CrossRef
Zurück zum Zitat Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V (2009) Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett 9(1):264–268CrossRef Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V (2009) Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett 9(1):264–268CrossRef
Zurück zum Zitat Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133CrossRef Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133CrossRef
Zurück zum Zitat Muller D, Silva J, Rambo C, Barra G, Dourado F, Gama F (2013) Neuronal cells behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3d) scaffolds. J Biomater Sci Polym Ed 24(11):1368–1377CrossRef Muller D, Silva J, Rambo C, Barra G, Dourado F, Gama F (2013) Neuronal cells behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3d) scaffolds. J Biomater Sci Polym Ed 24(11):1368–1377CrossRef
Zurück zum Zitat Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182CrossRef Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182CrossRef
Zurück zum Zitat Pahlman S, Hoehner J, Nanberg E, Hedborg F, Fagerstrom S, Gestblom C, Johansson I, Larsson U, Lavenius E, Ortoft E, Soderholm H (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer Part A: Gen Top 31(4):453–458CrossRef Pahlman S, Hoehner J, Nanberg E, Hedborg F, Fagerstrom S, Gestblom C, Johansson I, Larsson U, Lavenius E, Ortoft E, Soderholm H (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer Part A: Gen Top 31(4):453–458CrossRef
Zurück zum Zitat Pham Q, Sharma U, Mikos A (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211CrossRef Pham Q, Sharma U, Mikos A (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211CrossRef
Zurück zum Zitat Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng—Part A 14(11):1787–1797CrossRef Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng—Part A 14(11):1787–1797CrossRef
Zurück zum Zitat Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv Energy Mater 2(4):445–454CrossRef Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A (2012) Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv Energy Mater 2(4):445–454CrossRef
Zurück zum Zitat Rodríguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfac 3(3):681–689CrossRef Rodríguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfac 3(3):681–689CrossRef
Zurück zum Zitat Schmidt C, Shastri V, Vacanti J, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94(17):8948–8953CrossRef Schmidt C, Shastri V, Vacanti J, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94(17):8948–8953CrossRef
Zurück zum Zitat Selinummi J, Sarkanen JR, Niemistö A, Linne ML, Ylikomi T, Yli-Harja O, Jalonen TO (2006) Quantification of vesicles in differentiating human sh-sy5y neuroblastoma cells by automated image analysis. Neurosci Lett 396(2):102–107CrossRef Selinummi J, Sarkanen JR, Niemistö A, Linne ML, Ylikomi T, Yli-Harja O, Jalonen TO (2006) Quantification of vesicles in differentiating human sh-sy5y neuroblastoma cells by automated image analysis. Neurosci Lett 396(2):102–107CrossRef
Zurück zum Zitat Shi Z, Gao H, Feng J, Ding B, Cao X, Kuga S, Wang Y, Zhang L, Cai J (2014) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem—Int Ed 53(21):5380–5384CrossRef Shi Z, Gao H, Feng J, Ding B, Cao X, Kuga S, Wang Y, Zhang L, Cai J (2014) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem—Int Ed 53(21):5380–5384CrossRef
Zurück zum Zitat Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241CrossRef Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241CrossRef
Zurück zum Zitat Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L (2014) Efficient high active mass paper-based energystorage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. J Mater Chem A 2(21):7711–7716CrossRef Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L (2014) Efficient high active mass paper-based energystorage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. J Mater Chem A 2(21):7711–7716CrossRef
Zurück zum Zitat Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. part i. traditional factors. Tissue Eng 7(6):679–689CrossRef Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. part i. traditional factors. Tissue Eng 7(6):679–689CrossRef
Metadaten
Titel
In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering
verfasst von
Johannes Thunberg
Theodoros Kalogeropoulos
Volodymyr Kuzmenko
Daniel Hägg
Sara Johannesson
Gunnar Westman
Paul Gatenholm
Publikationsdatum
01.06.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0591-5

Weitere Artikel der Ausgabe 3/2015

Cellulose 3/2015 Zur Ausgabe