Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2020

05.09.2020

In Vitro Biological Characterization of Natural Hydroxyapatite/Single-Walled Carbon Nanotube Composite Coatings Synthesized by Electrophoretic Deposition on NiTi Shape Memory Alloy

verfasst von: Leila Nematzadeh, Nazila Horandghadim, Vida Khalili, Jafar Khalil-Allafi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current work, the composite coating of natural hydroxyapatite (nHA)/single-walled carbon nanotubes (SWCNTs) with various contents of SWCNTs (0, 0.5, 1, and 2 wt.%) was applied on NiTi using electrophoretic deposition (EPD). Before the deposition process, the nanotubes were functionalized following the chemical oxidation method and characterized by FTIR. The sintering of samples was conducted at 800 °C for 3 h in a tube furnace under an argon atmosphere. The surface and cross-sectional microstructure of coatings was studied using a scanning electron microscope. The x-ray diffraction was utilized to investigate the effect of the SWCNTs secondary phase on the phase composition of the nHA layer after sintering. The incorporation of SWCNTs into the nHA layer resulted in the decomposition of some HA into the β-tricalcium phosphate phase. The tensile test was applied and displayed the enhancement in adhesion strength of nHA coating from 17.2 to 25 MPa after composing with 2 wt.% SWCNTs. The wettability of surfaces was assessed by measuring DMEM cell culture contact angles. The appraisement of the Ni ions release from the substrate demonstrated that the lowest release of Ni ions into DMEM cell culture after 7 days of incubation is achieved from NiTi coated with nHA-1 wt.% SWCNTs. The in vitro biocompatibility of the samples was pursued by MG63 osteoblast cell culturing and MTT assay. The highest cell attachment and proliferation on nHA-1 wt.% SWCNTs coating were attributed to the least toxic Ni ions release from the substrate of that.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Vanmeensel, K. Lietaert, B. Vrancken, S. Dadbakhsh, X. Li, J.P. Kruth, P. Krakhmalev, I. Yadroitsev, J.V. Humbeeck, Additively Manufactured Metals for Medical Applications, Additive Manufacturing: Materials, Processes, Quantifications and Applications, 1st ed., J. Zhang, Y.G. Jung, Ed., Butterworth-Heinemann, 2018, p 261–309 K. Vanmeensel, K. Lietaert, B. Vrancken, S. Dadbakhsh, X. Li, J.P. Kruth, P. Krakhmalev, I. Yadroitsev, J.V. Humbeeck, Additively Manufactured Metals for Medical Applications, Additive Manufacturing: Materials, Processes, Quantifications and Applications, 1st ed., J. Zhang, Y.G. Jung, Ed., Butterworth-Heinemann, 2018, p 261–309
2.
Zurück zum Zitat M.A. Baumann, Nickel-Titanium: Options and Challenges, J. Dent. Clin. North. Am., 2004, 48, p 55–67 M.A. Baumann, Nickel-Titanium: Options and Challenges, J. Dent. Clin. North. Am., 2004, 48, p 55–67
3.
Zurück zum Zitat B. Priyadarshini, M. Rama, and U. Vijayalakshmi, Bioactive Coating as a Surface Modification Technique for Biocompatible Metallic Implants: A Review, J. Asian Ceram. Soc., 2019, 7(4), p 397–406 B. Priyadarshini, M. Rama, and U. Vijayalakshmi, Bioactive Coating as a Surface Modification Technique for Biocompatible Metallic Implants: A Review, J. Asian Ceram. Soc., 2019, 7(4), p 397–406
4.
Zurück zum Zitat X. Wang, F. Liu, Y. Song, and Q. Sun, Enhanced Corrosion Resistance and Bio-Performance of Al2O3 Coated NiTi Alloy Improved by Polydopamine-Induced Hydroxyapatite Mineralization, J. Surf. Coat. Technol., 2019, 364, p 81–88 X. Wang, F. Liu, Y. Song, and Q. Sun, Enhanced Corrosion Resistance and Bio-Performance of Al2O3 Coated NiTi Alloy Improved by Polydopamine-Induced Hydroxyapatite Mineralization, J. Surf. Coat. Technol., 2019, 364, p 81–88
5.
Zurück zum Zitat J. Ryhänen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemelä, P. Sandvik, and W. Serlo, In Vivo Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy: Muscle and Perineural Tissue Responses and Encapsule Membrane Thickness, J. Biomed. Mater. Res. B Appl. Biomater., 1998, 41(3), p 481–488 J. Ryhänen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemelä, P. Sandvik, and W. Serlo, In Vivo Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy: Muscle and Perineural Tissue Responses and Encapsule Membrane Thickness, J. Biomed. Mater. Res. B Appl. Biomater., 1998, 41(3), p 481–488
6.
Zurück zum Zitat V. Sansone, D. Pagani, and M. Melato, The Effects on Bone Cells of Metal Ions Released From Orthopaedic Implants, J. Clin. Cases Miner. Bone Metab., 2013, 10(1), p 34–40 V. Sansone, D. Pagani, and M. Melato, The Effects on Bone Cells of Metal Ions Released From Orthopaedic Implants, J. Clin. Cases Miner. Bone Metab., 2013, 10(1), p 34–40
7.
Zurück zum Zitat N. Horandghadim, J. Khalil-Allafi, and M. Urgen, Effect of Ta2O5 Content on the Osseointegration and Cytotoxicity Behaviors in Hydroxyapatite-Ta2O5 Coatings Applied by EPD on Superelastic NiTi Alloys, J. Mater. Sci. Eng. C, 2019, 102, p 683–695 N. Horandghadim, J. Khalil-Allafi, and M. Urgen, Effect of Ta2O5 Content on the Osseointegration and Cytotoxicity Behaviors in Hydroxyapatite-Ta2O5 Coatings Applied by EPD on Superelastic NiTi Alloys, J. Mater. Sci. Eng. C, 2019, 102, p 683–695
8.
Zurück zum Zitat Y. Say and B. Aksakal, Silver/Selenium/Chitosan-Doped Hydroxyapatite Coatings on Biological NiTi Alloy: In Vitro Biodegradation Analysis, J. Solgel. Sci. Technol., 2019, 90, p 434–442 Y. Say and B. Aksakal, Silver/Selenium/Chitosan-Doped Hydroxyapatite Coatings on Biological NiTi Alloy: In Vitro Biodegradation Analysis, J. Solgel. Sci. Technol., 2019, 90, p 434–442
9.
Zurück zum Zitat L. Meng, Y. Wu, K. Pan, Y. Zhu, X. Li, W. Wei, and X. Liu, Polymeric Nanoparticles-Based Multi-Functional Coatings on NiTi Alloy with Nickel Ion Release Control, Cytocompatibility, and Antibacterial Performance, New J. Chem., 2019, 43, p 1551–1561 L. Meng, Y. Wu, K. Pan, Y. Zhu, X. Li, W. Wei, and X. Liu, Polymeric Nanoparticles-Based Multi-Functional Coatings on NiTi Alloy with Nickel Ion Release Control, Cytocompatibility, and Antibacterial Performance, New J. Chem., 2019, 43, p 1551–1561
10.
Zurück zum Zitat W. Suchanek and M. Yoshimura, Processing and Properties of Hydroxyapatite-based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 1998, 13(1), p 94–117 W. Suchanek and M. Yoshimura, Processing and Properties of Hydroxyapatite-based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res., 1998, 13(1), p 94–117
11.
Zurück zum Zitat S.O.R. Sheykholeslami, J. Khalil-Allafi, and L. Fathyunes, Preparation, Characterization, and Corrosion Behavior of Calcium Phosphate Coating Electrodeposited on the Modified Nanoporous Surface of NiTi Alloy for Biomedical Applications, J. Metal. Mater. Trans. A., 2018, 49, p 5878–5887 S.O.R. Sheykholeslami, J. Khalil-Allafi, and L. Fathyunes, Preparation, Characterization, and Corrosion Behavior of Calcium Phosphate Coating Electrodeposited on the Modified Nanoporous Surface of NiTi Alloy for Biomedical Applications, J. Metal. Mater. Trans. A., 2018, 49, p 5878–5887
12.
Zurück zum Zitat T. Sattar, T. Manzoor, F.A. Khalid, M. Akmal, and Gh Saeed, Improved In Vitro Bioactivity and Electrochemical Behavior of Hydroxyapatite-Coated NiTi Shape Memory Alloy, J. Mater. Sci., 2019, 54, p 7300–7306 T. Sattar, T. Manzoor, F.A. Khalid, M. Akmal, and Gh Saeed, Improved In Vitro Bioactivity and Electrochemical Behavior of Hydroxyapatite-Coated NiTi Shape Memory Alloy, J. Mater. Sci., 2019, 54, p 7300–7306
13.
Zurück zum Zitat A. Karimzadeh, M.R. Ayatollahi, A.R. Bushroa, and M.K. Herliansyah, Effect of Sintering Temperature on Mechanical and Tribological Properties of Hydroxyapatite Measured by Nanoindentation and Nanoscratch Experiments, J. Ceram. Int., 2014, 40, p 9159–9164 A. Karimzadeh, M.R. Ayatollahi, A.R. Bushroa, and M.K. Herliansyah, Effect of Sintering Temperature on Mechanical and Tribological Properties of Hydroxyapatite Measured by Nanoindentation and Nanoscratch Experiments, J. Ceram. Int., 2014, 40, p 9159–9164
14.
Zurück zum Zitat J. Guillem-Marti, N. Cinca, M. Punset, I.G. Cano, F.J. Gil, J.M. Guilemany, and S. Dosta, Porous Titanium-Hydroxyapatite Composite Coating Obtained on Titanium by Cold Gas Spray with High Bond Strength for Biomedical Applications, J. Colloids Surf B Biointerfaces, 2019, 180, p 245–253 J. Guillem-Marti, N. Cinca, M. Punset, I.G. Cano, F.J. Gil, J.M. Guilemany, and S. Dosta, Porous Titanium-Hydroxyapatite Composite Coating Obtained on Titanium by Cold Gas Spray with High Bond Strength for Biomedical Applications, J. Colloids Surf B Biointerfaces, 2019, 180, p 245–253
15.
Zurück zum Zitat N. Horandghadim, J. Khalil-Allafi, and M. Urgen, Influence of Tantalum Pentoxide Secondary Phase on Surface Features and Mechanical Properties of Hydroxyapatite Coating on NiTi Alloy Produced by Electrophoretic Deposition, J. Surf. Coat. Technol., 2020, 386, p 125458 N. Horandghadim, J. Khalil-Allafi, and M. Urgen, Influence of Tantalum Pentoxide Secondary Phase on Surface Features and Mechanical Properties of Hydroxyapatite Coating on NiTi Alloy Produced by Electrophoretic Deposition, J. Surf. Coat. Technol., 2020, 386, p 125458
16.
Zurück zum Zitat O. Geuli, I. Lewinstein, and D. Mandler, Composition-Tailoring of ZnO-Hydroxyapatite Nanocomposite as Bioactive and Antibacterial Coating, J. ACS Appl. Nano Mater., 2019, 2(5), p 2946–2957 O. Geuli, I. Lewinstein, and D. Mandler, Composition-Tailoring of ZnO-Hydroxyapatite Nanocomposite as Bioactive and Antibacterial Coating, J. ACS Appl. Nano Mater., 2019, 2(5), p 2946–2957
17.
Zurück zum Zitat H. Wang, X. Tian, and X. Ren, Influence of Yttria Stabilized Zirconia and Hydrothermal Treatment on Plasma Sprayed Hydroxyapatite Coatings, J. Wuhan Univ. Technol.-Math. Sci. Edit., 2020, 35, p 449–454 H. Wang, X. Tian, and X. Ren, Influence of Yttria Stabilized Zirconia and Hydrothermal Treatment on Plasma Sprayed Hydroxyapatite Coatings, J. Wuhan Univ. Technol.-Math. Sci. Edit., 2020, 35, p 449–454
18.
Zurück zum Zitat M. Li, Q. Liu, Zh Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, and Sh Wei, Graphene Oxide/Hydroxyapatite Composite Coatings Fabricated by Electrophoretic Nanotechnology for Biological Applications, Carbon, 2014, 67, p 185–197 M. Li, Q. Liu, Zh Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, and Sh Wei, Graphene Oxide/Hydroxyapatite Composite Coatings Fabricated by Electrophoretic Nanotechnology for Biological Applications, Carbon, 2014, 67, p 185–197
19.
Zurück zum Zitat B. Majkowska-Marzec, D. Rogala-Wielgus, M. Bartmanski, B. Bartosewicz, and A. Zielinski, Comparison of Properties of the Hybrid and Bilayer MWCNTs-Hydroxyapatite Coatings on Ti Alloy, Coatings, 2019, 9, p 643 B. Majkowska-Marzec, D. Rogala-Wielgus, M. Bartmanski, B. Bartosewicz, and A. Zielinski, Comparison of Properties of the Hybrid and Bilayer MWCNTs-Hydroxyapatite Coatings on Ti Alloy, Coatings, 2019, 9, p 643
20.
Zurück zum Zitat B. Li, X. Xia, M. Guo, Y. Jiang, Y. Li, Zh Zhang, Sh Liu, H. Li, Ch Liang, and H. Wang, Biological and Antibacterial Properties of the Micro-Nanostructured Hydroxyapatite/Chitosan Coating on Titanium, J. Sci. Rep., 2019, 9, p 14052 B. Li, X. Xia, M. Guo, Y. Jiang, Y. Li, Zh Zhang, Sh Liu, H. Li, Ch Liang, and H. Wang, Biological and Antibacterial Properties of the Micro-Nanostructured Hydroxyapatite/Chitosan Coating on Titanium, J. Sci. Rep., 2019, 9, p 14052
22.
Zurück zum Zitat Y. Chen, Y.Q. Zhang, T.H. Zhang, C.H. Gan, C.Y. Zheng, and G. Yu, Carbon Nanotube Reinforced Hydroxyapatite Composite Coatings Produced Through Laser Surface Alloying, Carbon, 2006, 44(1), p 37–45 Y. Chen, Y.Q. Zhang, T.H. Zhang, C.H. Gan, C.Y. Zheng, and G. Yu, Carbon Nanotube Reinforced Hydroxyapatite Composite Coatings Produced Through Laser Surface Alloying, Carbon, 2006, 44(1), p 37–45
23.
Zurück zum Zitat X. Li, X. Liu, J. Huang, Y. Fan, and F.-Z. Cui, Biomedical Investigation of CNT Based Coatings, J. Surf. Coat. Technol., 2011, 206, p 759–766 X. Li, X. Liu, J. Huang, Y. Fan, and F.-Z. Cui, Biomedical Investigation of CNT Based Coatings, J. Surf. Coat. Technol., 2011, 206, p 759–766
24.
Zurück zum Zitat R.L. Spear and R.E. Cameron, Carbon Nanotubes for Orthopaedic Implants, Int. J. Mater. Form., 2008, 1(2), p 127–133 R.L. Spear and R.E. Cameron, Carbon Nanotubes for Orthopaedic Implants, Int. J. Mater. Form., 2008, 1(2), p 127–133
25.
Zurück zum Zitat Y. Chen, T.H. Zhang, C.H. Gan, and G. Yu, Wear Studies of Hydroxyapatite Composite Coating Reinforced by Carbon Nanotubes, Carbon, 2007, 45, p 998–1004 Y. Chen, T.H. Zhang, C.H. Gan, and G. Yu, Wear Studies of Hydroxyapatite Composite Coating Reinforced by Carbon Nanotubes, Carbon, 2007, 45, p 998–1004
26.
Zurück zum Zitat D. Lahiri, V. Singh, A.K. Keshri, S. Seal, and A. Agarwal, Carbon Nanotube Toughened Hydroxyapatite by Spark Plasma Sintering: Microstructural Evolution and Multiscale Tribological Properties, Carbon, 2010, 48, p 3103–3120 D. Lahiri, V. Singh, A.K. Keshri, S. Seal, and A. Agarwal, Carbon Nanotube Toughened Hydroxyapatite by Spark Plasma Sintering: Microstructural Evolution and Multiscale Tribological Properties, Carbon, 2010, 48, p 3103–3120
27.
Zurück zum Zitat G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites, J. Nat. Mater., 2003, 2, p 38–42 G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites, J. Nat. Mater., 2003, 2, p 38–42
28.
Zurück zum Zitat X. Pei, Y. Zeng, R. He, Zh Li, L. Tian, J. Wang, Q. Wan, X. Li, and H. Bao, Single-Walled Carbon Nanotubes/Hydroxyapatite Coatings on Titanium Obtained by Electrochemical Deposition, J. Appl. Surf. Sci., 2014, 295, p 71–80 X. Pei, Y. Zeng, R. He, Zh Li, L. Tian, J. Wang, Q. Wan, X. Li, and H. Bao, Single-Walled Carbon Nanotubes/Hydroxyapatite Coatings on Titanium Obtained by Electrochemical Deposition, J. Appl. Surf. Sci., 2014, 295, p 71–80
29.
Zurück zum Zitat J.E. Park, Y.S. Jang, T.S. Bae, and M.H. Lee, Biocompatibility Characteristics of Titanium Coated with Multi Walled Carbon Nanotubes-Hydroxyapatite Nanocomposites, J. Mater., 2019, 12(2), p 1–12 J.E. Park, Y.S. Jang, T.S. Bae, and M.H. Lee, Biocompatibility Characteristics of Titanium Coated with Multi Walled Carbon Nanotubes-Hydroxyapatite Nanocomposites, J. Mater., 2019, 12(2), p 1–12
30.
Zurück zum Zitat J. Liu and X. Ji, Hydroxyapatite-Carbon Nanotubes Composite Coatings on Ti Substrate, J. Adv. Mater. Res., 2012, 424–425, p 86–89 J. Liu and X. Ji, Hydroxyapatite-Carbon Nanotubes Composite Coatings on Ti Substrate, J. Adv. Mater. Res., 2012, 424–425, p 86–89
31.
Zurück zum Zitat A. Abrishamchian, T. Hooshmand, M. Mohammadi, and F. Najafi, Preparation and Characterization of Multi-Walled Carbon Nanotube/Hydroxyapatite Nanocomposite Film Dip Coated on Ti-6Al-4 V by Sol-Gel Method for Biomedical Applications: An In Vitro Study, J. Mater. Sci. Eng. C, 2013, 33, p 2002–2010 A. Abrishamchian, T. Hooshmand, M. Mohammadi, and F. Najafi, Preparation and Characterization of Multi-Walled Carbon Nanotube/Hydroxyapatite Nanocomposite Film Dip Coated on Ti-6Al-4 V by Sol-Gel Method for Biomedical Applications: An In Vitro Study, J. Mater. Sci. Eng. C, 2013, 33, p 2002–2010
32.
Zurück zum Zitat B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, and H.E. Kim, Mechanical and In Vitro Biological Performances of Hydroxyapatite-Carbon Nanotube Composite Coatings Deposited on Ti by Aerosol Deposition, J. Acta Biomater., 2009, 5, p 3205–3214 B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, and H.E. Kim, Mechanical and In Vitro Biological Performances of Hydroxyapatite-Carbon Nanotube Composite Coatings Deposited on Ti by Aerosol Deposition, J. Acta Biomater., 2009, 5, p 3205–3214
33.
Zurück zum Zitat C. Kaya, I. Singh, and A.R. Boccaccini, Multi-Walled Carbon Nanotube-Reinforced Hydroxyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD), J. Adv. Eng. Mater., 2008, 10(1–2), p 131–138 C. Kaya, I. Singh, and A.R. Boccaccini, Multi-Walled Carbon Nanotube-Reinforced Hydroxyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD), J. Adv. Eng. Mater., 2008, 10(1–2), p 131–138
34.
Zurück zum Zitat A.R. Boccaccini, J. Cho, T. Subhani, C. Kaya, and F. Kaya, Electrophoretic Deposition of Carbon Nanotube-Ceramic Nanocomposites, J. Eur. Ceram. Soc., 2010, 30, p 1115–1129 A.R. Boccaccini, J. Cho, T. Subhani, C. Kaya, and F. Kaya, Electrophoretic Deposition of Carbon Nanotube-Ceramic Nanocomposites, J. Eur. Ceram. Soc., 2010, 30, p 1115–1129
35.
Zurück zum Zitat Y. Bai, M.P. Neupane, S. Park, M.H. Lee, T.S. Bae, F. Watari, and M. Uo, Electrophoretic Deposition of Carbon Nanotubes-Hydroxyapatite Nanocomposites on Titanium Substrate, J. Mater. Sci. Eng. C, 2010, 30, p 1043–1049 Y. Bai, M.P. Neupane, S. Park, M.H. Lee, T.S. Bae, F. Watari, and M. Uo, Electrophoretic Deposition of Carbon Nanotubes-Hydroxyapatite Nanocomposites on Titanium Substrate, J. Mater. Sci. Eng. C, 2010, 30, p 1043–1049
36.
Zurück zum Zitat P. Ducheyne, W.V. Raemdonck, J.C. Heughebaert, and M. Heughebaert, Structural Analysis of Hydroxyapatite Coatings on Titanium, J. Biomater., 1986, 7(2), p 97–103 P. Ducheyne, W.V. Raemdonck, J.C. Heughebaert, and M. Heughebaert, Structural Analysis of Hydroxyapatite Coatings on Titanium, J. Biomater., 1986, 7(2), p 97–103
37.
Zurück zum Zitat Ch Du, D. Heldbrant, and N. Pan, Preparation and Preliminary Property Study of Carbon Nanotubes Films by Electrophoretic Deposition, J. Mater. Lett., 2002, 57, p 434–438 Ch Du, D. Heldbrant, and N. Pan, Preparation and Preliminary Property Study of Carbon Nanotubes Films by Electrophoretic Deposition, J. Mater. Lett., 2002, 57, p 434–438
38.
Zurück zum Zitat I. Singh, C. Kaya, M.S.P. Shaffer, B.C. Thomas, and A.R. Boccaccini, Bioactive Ceramic Coatings Containing Carbon Nanotubes on Metallic Substrates by Electrophoretic Deposition, J. Mater. Sci., 2006, 41, p 8144–8151 I. Singh, C. Kaya, M.S.P. Shaffer, B.C. Thomas, and A.R. Boccaccini, Bioactive Ceramic Coatings Containing Carbon Nanotubes on Metallic Substrates by Electrophoretic Deposition, J. Mater. Sci., 2006, 41, p 8144–8151
39.
Zurück zum Zitat L. Besra and M. Liub, A Review on Fundamentals and Applications of electrophoretic deposition (EPD), Prog. Mater Sci., 2007, 52(1), p 1–61 L. Besra and M. Liub, A Review on Fundamentals and Applications of electrophoretic deposition (EPD), Prog. Mater Sci., 2007, 52(1), p 1–61
40.
Zurück zum Zitat P. Sarkar and P.S. Nicholson, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, J. Am. Ceram. Soc., 1996, 79(8), p 1987–2002 P. Sarkar and P.S. Nicholson, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, J. Am. Ceram. Soc., 1996, 79(8), p 1987–2002
41.
Zurück zum Zitat C. Lin, H. Han, F. Zhang, and A. Li, Electrophoretic Deposition of HA/MWNTs Composite Coating for Biomaterial Applications. J. Mater. Sci.: Mater, Med., 2008, 19, p 2569–2574 C. Lin, H. Han, F. Zhang, and A. Li, Electrophoretic Deposition of HA/MWNTs Composite Coating for Biomaterial Applications. J. Mater. Sci.: Mater, Med., 2008, 19, p 2569–2574
42.
Zurück zum Zitat S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroglu, K. Vig, V.A. Dennis, and ShR Singh, Functionalized Carbon Nanotubes: Biomedical Applications, Int. J. Nanomed., 2012, 7, p 5361–5374 S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroglu, K. Vig, V.A. Dennis, and ShR Singh, Functionalized Carbon Nanotubes: Biomedical Applications, Int. J. Nanomed., 2012, 7, p 5361–5374
43.
Zurück zum Zitat H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, and M. Javidi, Hydroxyapatite Coating on NiTi Shape Memory Alloy by Electrophoretic Deposition Process, J. Surf. Coat. Tech., 2012, 208, p 57–63 H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, and M. Javidi, Hydroxyapatite Coating on NiTi Shape Memory Alloy by Electrophoretic Deposition Process, J. Surf. Coat. Tech., 2012, 208, p 57–63
44.
Zurück zum Zitat A.M. Rashidi, M.M. Akbarnejad, A.A. Khodadadi, Y. Mortazavi, and A. Ahmadpourd, Single-Wall Carbon Nanotubes Synthesized Using Organic Additives to Co-Mo Catalysts Supported on Nanoporous MgO, J. Nanotech., 2007, 18(31), p 315605 A.M. Rashidi, M.M. Akbarnejad, A.A. Khodadadi, Y. Mortazavi, and A. Ahmadpourd, Single-Wall Carbon Nanotubes Synthesized Using Organic Additives to Co-Mo Catalysts Supported on Nanoporous MgO, J. Nanotech., 2007, 18(31), p 315605
45.
Zurück zum Zitat S.W. Kim, T. Kim, Y.S. Kim, H.S. Choi, H.J. Lim, S.J. Yang, and ChR Prak, Surface Modifications for the Effective Dispersion of Carbon Nanotubes in Solvents and Polymers, Carbon, 2012, 50, p 3–33 S.W. Kim, T. Kim, Y.S. Kim, H.S. Choi, H.J. Lim, S.J. Yang, and ChR Prak, Surface Modifications for the Effective Dispersion of Carbon Nanotubes in Solvents and Polymers, Carbon, 2012, 50, p 3–33
46.
Zurück zum Zitat V. Mussi, C. Biale, S. Visentin, N. Barbero, M. Rocchia, and U. Valbusa, Raman Analysis and Mapping for the Determination of COOH Groups on Oxidized Single Walled Carbon Nanotubes, Carbon, 2010, 48, p 3391–3398 V. Mussi, C. Biale, S. Visentin, N. Barbero, M. Rocchia, and U. Valbusa, Raman Analysis and Mapping for the Determination of COOH Groups on Oxidized Single Walled Carbon Nanotubes, Carbon, 2010, 48, p 3391–3398
47.
Zurück zum Zitat H. Kitamura, M. Sekido, H. Takeuchi, and M. Ohno, The Method for Surface Functionalization of Single-Walled Carbon Nanotubes with Fuming Nitric Acid, Carbon, 2011, 49, p 3851–3856 H. Kitamura, M. Sekido, H. Takeuchi, and M. Ohno, The Method for Surface Functionalization of Single-Walled Carbon Nanotubes with Fuming Nitric Acid, Carbon, 2011, 49, p 3851–3856
48.
Zurück zum Zitat L.N. Suvarapu, S.O. Baek, Recent Studies on the Speciation and Determination of Mercury in Different Environmental Matrices Using Various Analytical Techniques, Int. J. Anal. Chem., 2017, 2017, p 1–28. L.N. Suvarapu, S.O. Baek, Recent Studies on the Speciation and Determination of Mercury in Different Environmental Matrices Using Various Analytical Techniques, Int. J. Anal. Chem., 2017, 2017, p 1–28.
49.
Zurück zum Zitat J. Chen, Q. Chen, and Q. Ma, Influence of Surface Functionalization via Chemical Oxidation on the properties of carbon nanotubes, J. Colloid Interface Sci., 2012, 370, p 32–38 J. Chen, Q. Chen, and Q. Ma, Influence of Surface Functionalization via Chemical Oxidation on the properties of carbon nanotubes, J. Colloid Interface Sci., 2012, 370, p 32–38
50.
Zurück zum Zitat M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys Used for Medical Application, J. Anal. Bioanal. Chem., 2005, 381(3), p 557–567 M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys Used for Medical Application, J. Anal. Bioanal. Chem., 2005, 381(3), p 557–567
51.
Zurück zum Zitat R.W. Nilen and P.W. Richter, The Thermal Stability of Hydroxyapatite in Biphasic Calcium Phosphate Ceramics, J. Mater. Sci. Mater. Med., 2008, 19(4), p 1693–1702 R.W. Nilen and P.W. Richter, The Thermal Stability of Hydroxyapatite in Biphasic Calcium Phosphate Ceramics, J. Mater. Sci. Mater. Med., 2008, 19(4), p 1693–1702
52.
Zurück zum Zitat X.Y. Pang and X. Bao, Influence of Temperature, Ripening Time and Calcination on the Morphology and Crystallinity of Hydroxyapatite Nanoparticles, J. Euro. Ceram. Soc., 2003, 23(10), p 1697–1704 X.Y. Pang and X. Bao, Influence of Temperature, Ripening Time and Calcination on the Morphology and Crystallinity of Hydroxyapatite Nanoparticles, J. Euro. Ceram. Soc., 2003, 23(10), p 1697–1704
53.
Zurück zum Zitat C.M. Assis, L.C. Vercik, M.L. Santos, M.V.L. Fook, and A.C. Guastaldi, Comparison of Crystallinity Between Natural Hydroxyapatite and Synthetic Cp-Ti/HA Coatings, J. Mater. Res., 2005, 8(2), p 207–211 C.M. Assis, L.C. Vercik, M.L. Santos, M.V.L. Fook, and A.C. Guastaldi, Comparison of Crystallinity Between Natural Hydroxyapatite and Synthetic Cp-Ti/HA Coatings, J. Mater. Res., 2005, 8(2), p 207–211
54.
Zurück zum Zitat L. Stappers, L. Zhang, O. Van der Biest, and J. Fransaer, The Effect of Electrolyte Conductivity on Electrophoretic Deposition, J. Colloid Interface Sci., 2008, 328, p 436 L. Stappers, L. Zhang, O. Van der Biest, and J. Fransaer, The Effect of Electrolyte Conductivity on Electrophoretic Deposition, J. Colloid Interface Sci., 2008, 328, p 436
55.
Zurück zum Zitat N. Horandghadim and J. Khalil-Allafi, Characterization of Hydroxyapatite-Tantalum Pentoxide Nanocomposite Coating Applied by Electrophoretic Deposition on Nitinol Superelastic Alloy, J. Ceram. Inter., 2019, 45, p 10448–10460 N. Horandghadim and J. Khalil-Allafi, Characterization of Hydroxyapatite-Tantalum Pentoxide Nanocomposite Coating Applied by Electrophoretic Deposition on Nitinol Superelastic Alloy, J. Ceram. Inter., 2019, 45, p 10448–10460
56.
Zurück zum Zitat A. Troelstra, Applying Coatings by Electrophoresis, J. Philips Tech. Rev., 1951, 12, p 293–303 A. Troelstra, Applying Coatings by Electrophoresis, J. Philips Tech. Rev., 1951, 12, p 293–303
57.
Zurück zum Zitat V. Khalili, J. Khalil-Allafi, W. Xia, A.B. Parsa, J. Frenzel, Ch Somsen, and G. Eggeler, Preparing Hydroxyapatite-Silicon Composite Suspensions with Homogeneous Distribution of Multi-Walled Carbon Nano-Tubes for Electrophoretic Coating of NiTi Bone Implant and Their Effect on the Surface Morphology, J. Appl. Surf. Sci., 2016, 366, p 158–165 V. Khalili, J. Khalil-Allafi, W. Xia, A.B. Parsa, J. Frenzel, Ch Somsen, and G. Eggeler, Preparing Hydroxyapatite-Silicon Composite Suspensions with Homogeneous Distribution of Multi-Walled Carbon Nano-Tubes for Electrophoretic Coating of NiTi Bone Implant and Their Effect on the Surface Morphology, J. Appl. Surf. Sci., 2016, 366, p 158–165
58.
Zurück zum Zitat H. Maleki-Ghaleh and J. Khalil-Allafi, Characterization, Mechanical and In Vitro Biological Behavior of Hydroxyapatite-Titanium-Carbon Nanotube Composite Coatings Deposited on NiTi Alloy by Electrophoretic Deposition, J. surf. Coat. Technol., 2019, 363, p 179–190 H. Maleki-Ghaleh and J. Khalil-Allafi, Characterization, Mechanical and In Vitro Biological Behavior of Hydroxyapatite-Titanium-Carbon Nanotube Composite Coatings Deposited on NiTi Alloy by Electrophoretic Deposition, J. surf. Coat. Technol., 2019, 363, p 179–190
59.
Zurück zum Zitat N. Horandghadim, J. Khalil-Allafi, E. Kaçar, and M. Urgen, Biomechanical Compatibility and Electrochemical Stability of HA/Ta2O5 Nanocomposite Coating Produced by Electrophoretic Deposition on Superelastic NiTi Alloy, J. Alloys Compd., 2019, 799, p 193–204 N. Horandghadim, J. Khalil-Allafi, E. Kaçar, and M. Urgen, Biomechanical Compatibility and Electrochemical Stability of HA/Ta2O5 Nanocomposite Coating Produced by Electrophoretic Deposition on Superelastic NiTi Alloy, J. Alloys Compd., 2019, 799, p 193–204
60.
Zurück zum Zitat C. Kaya, F. Kaya, J. Cho, J.A. Roether, and A.R. Boccaccini, Carbon Nanotube-Reinforced Hydroxyapatite Coatings on Metallic Implants Using Electrophoretic Deposition, J. Key Eng. Mater., 2009, 412, p 93–97 C. Kaya, F. Kaya, J. Cho, J.A. Roether, and A.R. Boccaccini, Carbon Nanotube-Reinforced Hydroxyapatite Coatings on Metallic Implants Using Electrophoretic Deposition, J. Key Eng. Mater., 2009, 412, p 93–97
61.
Zurück zum Zitat ShF Ou, ShY Chiou, and K.L. Ou, Phase Transformation on Hydroxyapatite Decomposition, J. Ceram. Inter., 2013, 39, p 3809–3816 ShF Ou, ShY Chiou, and K.L. Ou, Phase Transformation on Hydroxyapatite Decomposition, J. Ceram. Inter., 2013, 39, p 3809–3816
62.
Zurück zum Zitat M. Canillas, P. Pena, A.H. de Aza, and M.A. Rodríguez, Calcium Phosphates for Biomedical Applications, J. Bol. Soc. Esp. Cerám. V, 2017, 56(3), p 91–112 M. Canillas, P. Pena, A.H. de Aza, and M.A. Rodríguez, Calcium Phosphates for Biomedical Applications, J. Bol. Soc. Esp. Cerám. V, 2017, 56(3), p 91–112
63.
Zurück zum Zitat R.A. Gittens, L. Scheideler, F. Rupp, and B.D. Boyan, A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects, J. Acta Biomater., 2014, 10, p 2907–2918 R.A. Gittens, L. Scheideler, F. Rupp, and B.D. Boyan, A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects, J. Acta Biomater., 2014, 10, p 2907–2918
64.
Zurück zum Zitat L. Fathyunes and J. Khalil-Allafi, The Effect of Graphene Oxide on Surface Features, Biological Performance and Bio-Stability of Calcium Phosphate Coating Applied by Pulse Electrochemical Deposition, J. Appl. Surf. Sci., 2018, 437, p 122–135 L. Fathyunes and J. Khalil-Allafi, The Effect of Graphene Oxide on Surface Features, Biological Performance and Bio-Stability of Calcium Phosphate Coating Applied by Pulse Electrochemical Deposition, J. Appl. Surf. Sci., 2018, 437, p 122–135
65.
Zurück zum Zitat K. Webb, V. Hlady, and P.A. Tresco, Relationships Among Cell Attachment, Spreading, Cytoskeletal Organization, and Migration Rate for Anchorage-Dependent Cells on Model Surfaces, J. Biomed. Mater. Res. B Appl. Biomater., 2000, 49(3), p 362–368 K. Webb, V. Hlady, and P.A. Tresco, Relationships Among Cell Attachment, Spreading, Cytoskeletal Organization, and Migration Rate for Anchorage-Dependent Cells on Model Surfaces, J. Biomed. Mater. Res. B Appl. Biomater., 2000, 49(3), p 362–368
66.
Zurück zum Zitat A. Khandan, M. Abdellahi, N. Ozada, and H. Ghayour, Study of the Bioactivity, Wettability and Hardness Behaviour of the Bovine Hydroxyapatite-Diopside bio-Nanocomposite Coating, J. Taiwan Inst. Chem. Eng., 2016, 60(c), p 538–546 A. Khandan, M. Abdellahi, N. Ozada, and H. Ghayour, Study of the Bioactivity, Wettability and Hardness Behaviour of the Bovine Hydroxyapatite-Diopside bio-Nanocomposite Coating, J. Taiwan Inst. Chem. Eng., 2016, 60(c), p 538–546
67.
Zurück zum Zitat Z. Huan, L.E. Fratila-Apachitei, and J. Duszczyk, Effect of Aging Treatment on the In Vitro Nickel Release from Porous Oxide Layers on NiTi, J. Appl. Surf. Sci., 2013, 274, p 266–272 Z. Huan, L.E. Fratila-Apachitei, and J. Duszczyk, Effect of Aging Treatment on the In Vitro Nickel Release from Porous Oxide Layers on NiTi, J. Appl. Surf. Sci., 2013, 274, p 266–272
Metadaten
Titel
In Vitro Biological Characterization of Natural Hydroxyapatite/Single-Walled Carbon Nanotube Composite Coatings Synthesized by Electrophoretic Deposition on NiTi Shape Memory Alloy
verfasst von
Leila Nematzadeh
Nazila Horandghadim
Vida Khalili
Jafar Khalil-Allafi
Publikationsdatum
05.09.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05094-0

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Engineering and Performance 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.