Skip to main content
Erschienen in: Journal of Materials Science 11/2018

28.02.2018 | Biomaterials

In vitro mineralization kinetics of poly(l-lactic acid)/hydroxyapatite nanocomposite material by attenuated total reflection Fourier transform infrared mapping coupled with principal component analysis

verfasst von: Tongtong Dou, Nan Jing, Bingyao Zhou, Pudun Zhang

Erschienen in: Journal of Materials Science | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(l-lactic acid)/hydroxyapatite (PLLA/HA) nanocomposite, which combines the properties of PLLA and HA, is suitable to construct scaffold for bone tissue engineering. Its mineralization behavior plays a key role in composite’s property. In this present work, two PLLA/HA composites with porous and compact architecture were fabricated and soaked into simulated body fluid (SBF) at 37 °C for in vitro mineralization, respectively. An attenuated total reflection Fourier transform infrared (ATR FTIR) mapping coupled with principal component analysis was developed to investigate the mineralization kinetics. The FTIR images with an area of 300 × 300 μm2 were collected every 7 days. The results suggest that the mineralization of PLLA/HA composites in SBF follows a zero-order kinetic model, no matter what the architecture is. However, it follows a second-order model when the composite is degraded in phosphate-buffered saline solution based on our previous work. The mechanisms of the in vitro mineralization kinetics in different submersion solutions are discussed. Our results alert researchers that they should choose the mineralization medium cautiously.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451CrossRef Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451CrossRef
2.
Zurück zum Zitat Liu XH, Holzwarth JM, Ma PX (2012) Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 12:911–919CrossRef Liu XH, Holzwarth JM, Ma PX (2012) Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 12:911–919CrossRef
3.
Zurück zum Zitat Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRef Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRef
4.
Zurück zum Zitat Wei GB, Ma PX (2009) Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials 30:6426–6434CrossRef Wei GB, Ma PX (2009) Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials 30:6426–6434CrossRef
5.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
6.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
7.
Zurück zum Zitat Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRef
8.
Zurück zum Zitat Khakestani M, Jafari SH, Zahedi P, Bagheri R, Hajiaghaee R (2017) Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing Equisetum arvense herbal extract for bone tissue engineering. J Appl Polym Sci 134:45343CrossRef Khakestani M, Jafari SH, Zahedi P, Bagheri R, Hajiaghaee R (2017) Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing Equisetum arvense herbal extract for bone tissue engineering. J Appl Polym Sci 134:45343CrossRef
9.
Zurück zum Zitat Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRef
10.
Zurück zum Zitat Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRef
11.
Zurück zum Zitat Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRef Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4CrossRef
12.
Zurück zum Zitat Marelli B, Ghezzi CE, Barralet JE, Boccaccini AR, Nazhat SN (2010) Three-dimensional mineralization of dense nanofibrillar collagen–bioglass hybrid scaffolds. Biomacromolecules 11:1470–1479CrossRef Marelli B, Ghezzi CE, Barralet JE, Boccaccini AR, Nazhat SN (2010) Three-dimensional mineralization of dense nanofibrillar collagen–bioglass hybrid scaffolds. Biomacromolecules 11:1470–1479CrossRef
13.
Zurück zum Zitat Choi S-W, Zhang Y, Thomopoulos S, Xia Y (2010) In vitro mineralization by preosteoblasts in poly(dl-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir 26:12126–12131CrossRef Choi S-W, Zhang Y, Thomopoulos S, Xia Y (2010) In vitro mineralization by preosteoblasts in poly(dl-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir 26:12126–12131CrossRef
14.
Zurück zum Zitat Haimi S, Suuriniemi N, Haaparanta A-M et al (2009) Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/β-TCP scaffolds. Tissue Eng A 15:1473–1480CrossRef Haimi S, Suuriniemi N, Haaparanta A-M et al (2009) Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/β-TCP scaffolds. Tissue Eng A 15:1473–1480CrossRef
15.
Zurück zum Zitat Conoscenti G, Pavia FC, Ciraldo FE, Liverani L, Brucato V, La Carrubba V, Boccaccini AR (2018) In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions. J Mater Sci 53:2362–2374. https://doi.org/10.1007/s10853-017-1743-9 CrossRef Conoscenti G, Pavia FC, Ciraldo FE, Liverani L, Brucato V, La Carrubba V, Boccaccini AR (2018) In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions. J Mater Sci 53:2362–2374. https://​doi.​org/​10.​1007/​s10853-017-1743-9 CrossRef
16.
Zurück zum Zitat Riteau N, Sher A (2016) Chitosan: an adjuvant with an unanticipated STING. Immunity 44:522–524CrossRef Riteau N, Sher A (2016) Chitosan: an adjuvant with an unanticipated STING. Immunity 44:522–524CrossRef
17.
Zurück zum Zitat Park S-B, Lih E, Park K-S, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRef Park S-B, Lih E, Park K-S, Joung YK, Han DK (2017) Biopolymer-based functional composites for medical applications. Prog Polym Sci 68:77–105CrossRef
18.
Zurück zum Zitat Bhattacharjee P, Kundu B, Naskar D, Kim H-W, Maiti TK, Bhattacharya D, Kundu SC (2017) Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17CrossRef Bhattacharjee P, Kundu B, Naskar D, Kim H-W, Maiti TK, Bhattacharya D, Kundu SC (2017) Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17CrossRef
19.
Zurück zum Zitat Zhong QW, Li WH, Sua XP, Li G, Zhou Y, Kundub SC, Yao J, Cai Y (2016) Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surf B 143:56–63CrossRef Zhong QW, Li WH, Sua XP, Li G, Zhou Y, Kundub SC, Yao J, Cai Y (2016) Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surf B 143:56–63CrossRef
20.
Zurück zum Zitat Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (1999) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 20:1221–1227 Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (1999) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 20:1221–1227
21.
Zurück zum Zitat Naderi H, Matin MM, Bahrami AR (2011) Review paper: critical issue in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery system. J Biomater Appl 26:383–417CrossRef Naderi H, Matin MM, Bahrami AR (2011) Review paper: critical issue in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery system. J Biomater Appl 26:383–417CrossRef
22.
Zurück zum Zitat Díaz E, Sandonis I, Puerto I, Ibáñez I (2014) In vitro degradation of PLLA/nHA composite scaffolds. Polym Eng Sci 54:2571–2578CrossRef Díaz E, Sandonis I, Puerto I, Ibáñez I (2014) In vitro degradation of PLLA/nHA composite scaffolds. Polym Eng Sci 54:2571–2578CrossRef
23.
Zurück zum Zitat Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659CrossRef Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659CrossRef
24.
Zurück zum Zitat Place ES, George JH, Williamsc CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139–1151CrossRef Place ES, George JH, Williamsc CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139–1151CrossRef
25.
Zurück zum Zitat Jiang LY, Xiong CD, Jiang LX, Xu LJ (2014) Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Compos Sci Technol 93:61–67CrossRef Jiang LY, Xiong CD, Jiang LX, Xu LJ (2014) Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Compos Sci Technol 93:61–67CrossRef
26.
Zurück zum Zitat Larránaga A, Aldazabal P, Martin FJ, Sarasua JR (2014) Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polym Degrad Stab 110:121–128CrossRef Larránaga A, Aldazabal P, Martin FJ, Sarasua JR (2014) Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polym Degrad Stab 110:121–128CrossRef
27.
Zurück zum Zitat Zhou ZH, Yi QF, Liu LH, Liu XP, Liu QQ (2009) Influence of degradation of poly-l-lactide on mass loss, mechanical properties, and crystallinity in phosphate-buffered solution. J Macromol Sci B 48:309–317CrossRef Zhou ZH, Yi QF, Liu LH, Liu XP, Liu QQ (2009) Influence of degradation of poly-l-lactide on mass loss, mechanical properties, and crystallinity in phosphate-buffered solution. J Macromol Sci B 48:309–317CrossRef
28.
Zurück zum Zitat Zhang J, Yang SG, Ding JX, Li ZM (2016) Tailor-made poly(l-lactide)/poly(lactide-coglycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Adv 6:47418–47426CrossRef Zhang J, Yang SG, Ding JX, Li ZM (2016) Tailor-made poly(l-lactide)/poly(lactide-coglycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Adv 6:47418–47426CrossRef
29.
Zurück zum Zitat Rodenas-Rochina J, Vidaurre A, Cortázar IC, Lebourg M (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 119:121–131CrossRef Rodenas-Rochina J, Vidaurre A, Cortázar IC, Lebourg M (2015) Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 119:121–131CrossRef
30.
Zurück zum Zitat Davachi SM, Kaffashi B, Torabinejad B, Zamanian A, Seyfi J, Hejazi I (2016) Investigating thermal, mechanical and rheological properties of novel antibacterial hybrid nanocomposites based on PLLA/triclosan/nanohydroxyapatite. Polymer 90:232–241CrossRef Davachi SM, Kaffashi B, Torabinejad B, Zamanian A, Seyfi J, Hejazi I (2016) Investigating thermal, mechanical and rheological properties of novel antibacterial hybrid nanocomposites based on PLLA/triclosan/nanohydroxyapatite. Polymer 90:232–241CrossRef
31.
Zurück zum Zitat Ignjatović N, Savić V, Najman S, Plavšić M, Uskoković D (2001) A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22:571–575CrossRef Ignjatović N, Savić V, Najman S, Plavšić M, Uskoković D (2001) A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22:571–575CrossRef
32.
Zurück zum Zitat Baker MJ, Trevisan J, Bassan P et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791CrossRef Baker MJ, Trevisan J, Bassan P et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791CrossRef
33.
Zurück zum Zitat Bartnicka AS, Kimber JA, Borkowski L et al (2015) The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal Bioanal Chem 407:7775–7785CrossRef Bartnicka AS, Kimber JA, Borkowski L et al (2015) The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal Bioanal Chem 407:7775–7785CrossRef
34.
Zurück zum Zitat Kazarian SG, Chan KLA, Maquet V, Boccaccini AR (2004) Characterisation of bioactive and resorbable polylactide/bioglass composites by FTIR spectroscopic imaging. Biomaterials 25:3931–3938CrossRef Kazarian SG, Chan KLA, Maquet V, Boccaccini AR (2004) Characterisation of bioactive and resorbable polylactide/bioglass composites by FTIR spectroscopic imaging. Biomaterials 25:3931–3938CrossRef
35.
Zurück zum Zitat Wang Q, Jiang XT, Xin YZ, Cui JX, Zhang PD (2014) Characterization of in vitro mineralization of porous poly(l-lactic acid)/bioactive glass composites by attenuated total reflectance-Fourier transform infrared mapping. Chin J Anal Chem 42:221–226CrossRef Wang Q, Jiang XT, Xin YZ, Cui JX, Zhang PD (2014) Characterization of in vitro mineralization of porous poly(l-lactic acid)/bioactive glass composites by attenuated total reflectance-Fourier transform infrared mapping. Chin J Anal Chem 42:221–226CrossRef
36.
Zurück zum Zitat Bartnicka AS, Borkowski L, Ginalska G, Ślósarczyk A, Kazarian SG (2017) Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging. Spectrochim Acta A 171:155–161CrossRef Bartnicka AS, Borkowski L, Ginalska G, Ślósarczyk A, Kazarian SG (2017) Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging. Spectrochim Acta A 171:155–161CrossRef
37.
Zurück zum Zitat Wu L, Lv LL, Jing N, Zhang YY, Zhang PD (2013) Hydrothermal synthesis of size-controlled rod-like hydroxyapatite by orthogonal design. Bull Chin Ceram Soc 32:2622–2626 Wu L, Lv LL, Jing N, Zhang YY, Zhang PD (2013) Hydrothermal synthesis of size-controlled rod-like hydroxyapatite by orthogonal design. Bull Chin Ceram Soc 32:2622–2626
38.
Zurück zum Zitat Taherkhani S, Moztarzadeh F (2016) Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue. J Appl Polym Sci 133:43523CrossRef Taherkhani S, Moztarzadeh F (2016) Fabrication of a poly(ε-caprolactone)/starch nanocomposite scaffold with a solvent-casting/salt-leaching technique for bone tissue. J Appl Polym Sci 133:43523CrossRef
39.
Zurück zum Zitat Jiang XT, Wang Q, Zhang PD (2011) Preparation of porous polylactide/hydroxyapatite composites and their in vitro degradation. Chem Res Appl 23:755–760 Jiang XT, Wang Q, Zhang PD (2011) Preparation of porous polylactide/hydroxyapatite composites and their in vitro degradation. Chem Res Appl 23:755–760
40.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27:2907–2915CrossRef
41.
Zurück zum Zitat Zhou SB, Zheng XT, Yu XJ, Wang JX, Weng J, Li XH, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(d,l-lactide)/hydroxyapatite nanocomposites. Chem Mater 19:246–253 Zhou SB, Zheng XT, Yu XJ, Wang JX, Weng J, Li XH, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(d,l-lactide)/hydroxyapatite nanocomposites. Chem Mater 19:246–253
42.
Zurück zum Zitat Krikorian V, Pochan DJ (2005) Crystallization behavior of poly(l-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527CrossRef Krikorian V, Pochan DJ (2005) Crystallization behavior of poly(l-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527CrossRef
43.
Zurück zum Zitat Jing N, Jiang XT, Wang Q, Tang YJ, Zhang PD (2014) Attenuated total reflectance/Fourier transform Infrared (ATR/FTIR) mapping coupled with principal component analysis for the study of in vitro degradation of porous polylactide/hydroxyapatite composite material. Anal Methods 6:5590–5595CrossRef Jing N, Jiang XT, Wang Q, Tang YJ, Zhang PD (2014) Attenuated total reflectance/Fourier transform Infrared (ATR/FTIR) mapping coupled with principal component analysis for the study of in vitro degradation of porous polylactide/hydroxyapatite composite material. Anal Methods 6:5590–5595CrossRef
44.
Zurück zum Zitat Perssona M, Lorite GS, Kokkonen HE, Cho S-W, Lehenkari PP, Skrifvars M, Tuukkanen J (2014) Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B 121:409–416CrossRef Perssona M, Lorite GS, Kokkonen HE, Cho S-W, Lehenkari PP, Skrifvars M, Tuukkanen J (2014) Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B 121:409–416CrossRef
Metadaten
Titel
In vitro mineralization kinetics of poly(l-lactic acid)/hydroxyapatite nanocomposite material by attenuated total reflection Fourier transform infrared mapping coupled with principal component analysis
verfasst von
Tongtong Dou
Nan Jing
Bingyao Zhou
Pudun Zhang
Publikationsdatum
28.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2169-8

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Science 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.