Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Measurement Techniques 7/2020

20.11.2020

Inadequacy of Mathematical Models of Measurement Objects and Calculations of Risk Based On the Use of Gost ISO/IEC 17025–2019

verfasst von: S. F. Levin

Erschienen in: Measurement Techniques | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The problem of inadequacy of mathematical models of measurement objects in connection with the problem of “definitional uncertainty of measurements” and with the need to control risks in accordance with GOST ISO/IEC 17025–2019, General Requirements for the Competence of Testing and Calibration Laboratories, is considered. The history of the problem from the development of the moment approach and the compositional approach through assessment of precision to the introduction of the specialized term, error of inadequacy of a mathematical model of a measurement object, is described. The negative influence of the hopelessness of conceptual and terminological transformations in metrology and the critical contradiction of assessments of the applicability of the statistical methods presented in GOST R ISO/IEC 31010–2011, Management of Risk. Methods of Risk Assessment, and in the Guide to the Expression of Measurement Uncertainty are noted. It is shown that taking into account the inadequacy of probabilistic models in calculations of risk is a necessary condition for assuring the reliability of the results of measurements.
Literatur
1.
Zurück zum Zitat S. F. Levin, “Uncertainty in the narrow sense and in the broad sense of results of a verification of measurement instruments,” Izmer. Tekhn., No. 9, 15–19 (2007). S. F. Levin, “Uncertainty in the narrow sense and in the broad sense of results of a verification of measurement instruments,” Izmer. Tekhn., No. 9, 15–19 (2007).
2.
Zurück zum Zitat S. F. Levin, “Errors of measurements and calculations as the cause of the “catastrophic phenomenon of 1985–1986 in aviation and rocket and space flight engineering,” Kontr.- Izmer. Prib. Sist., No. 3, 21–24 (2000). S. F. Levin, “Errors of measurements and calculations as the cause of the “catastrophic phenomenon of 1985–1986 in aviation and rocket and space flight engineering,” Kontr.- Izmer. Prib. Sist., No. 3, 21–24 (2000).
3.
Zurück zum Zitat P. E. El’yasberg, Measurement Information: How Much is Needed? How Shuld it be Processed?, Nauka, Moscow (1983). P. E. El’yasberg, Measurement Information: How Much is Needed? How Shuld it be Processed?, Nauka, Moscow (1983).
4.
Zurück zum Zitat F. Hampel et al., Robustness in Statistics [Russian translation], Mir, Moscow (1989). F. Hampel et al., Robustness in Statistics [Russian translation], Mir, Moscow (1989).
5.
Zurück zum Zitat S. F. Levin, Optimal Interpolation Filtration of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte-Carlo Method and Red Shift Law, Akad. Nauk SSSR, Moscow (1980). S. F. Levin, Optimal Interpolation Filtration of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte-Carlo Method and Red Shift Law, Akad. Nauk SSSR, Moscow (1980).
6.
Zurück zum Zitat Problems of CyberneticsVK-94. Statistical Methods in the Theory of Operations Research, Akad. Nauk SSSR, Moscow (1982). Problems of CyberneticsVK-94. Statistical Methods in the Theory of Operations Research, Akad. Nauk SSSR, Moscow (1982).
7.
Zurück zum Zitat A. G. Ivakhnenko, Inductive Method of Self-Management of Models of Complex Systems, Naukova Dumka, Kiev (1982). A. G. Ivakhnenko, Inductive Method of Self-Management of Models of Complex Systems, Naukova Dumka, Kiev (1982).
9.
Zurück zum Zitat S. F. Levin, Procedural Recommendations. Degree of Guarantee of Operations Research Program, Znanie, Kiev (1989). S. F. Levin, Procedural Recommendations. Degree of Guarantee of Operations Research Program, Znanie, Kiev (1989).
10.
Zurück zum Zitat S. F. Levin, “Method of compactness maximum and complex measurement problems,” Izmer. Tekhn., No. 7, 15–21 (1995). S. F. Levin, “Method of compactness maximum and complex measurement problems,” Izmer. Tekhn., No. 7, 15–21 (1995).
11.
Zurück zum Zitat S. F. Levin, “Metrological certification and maintenance of statistical data processing programs,” Izmer. Tekhn., No. 12, 16–18 (1991). S. F. Levin, “Metrological certification and maintenance of statistical data processing programs,” Izmer. Tekhn., No. 12, 16–18 (1991).
13.
Zurück zum Zitat S. F. Levin, “The legend of uncertainty,” Partn. Konkur., No. 1, 13–25 (2001). S. F. Levin, “The legend of uncertainty,” Partn. Konkur., No. 1, 13–25 (2001).
14.
Zurück zum Zitat Physical Encyclopedia, Bol’shaya Ross. Ents., Moscow (1992), Vol. 3. Physical Encyclopedia, Bol’shaya Ross. Ents., Moscow (1992), Vol. 3.
16.
Zurück zum Zitat Yu. P. Adler, Yu. V. Granovskiy, and E. V. Markova, Theory of Experiment: Past, Present, and Future, Znanie, Moscow (1982). Yu. P. Adler, Yu. V. Granovskiy, and E. V. Markova, Theory of Experiment: Past, Present, and Future, Znanie, Moscow (1982).
17.
Zurück zum Zitat S. F. Levin, “What in fact should leading specialists be worried about with the introduction of uncertainty into domestic measurements,” Izmer. Tekhn., No. 12, 61–64 (2008). S. F. Levin, “What in fact should leading specialists be worried about with the introduction of uncertainty into domestic measurements,” Izmer. Tekhn., No. 12, 61–64 (2008).
18.
Zurück zum Zitat L. K. Isaev and V. V. Mardin, Russian-English-French-Spanish Dictionary of Basic and General Terms in Metrology, Izd. Standartov, Moscow (1998). L. K. Isaev and V. V. Mardin, Russian-English-French-Spanish Dictionary of Basic and General Terms in Metrology, Izd. Standartov, Moscow (1998).
19.
Zurück zum Zitat G. Scheffer, Dispersion Analysis [Russian translation], Izd. Fiz.-Mat. Lit., Moscow (1963). G. Scheffer, Dispersion Analysis [Russian translation], Izd. Fiz.-Mat. Lit., Moscow (1963).
20.
Zurück zum Zitat S. F. Levin, “Unsolved problems of ‘precision.’ Part 1,” Glavn. Metrolog, No. 3, 5–7 (2003). S. F. Levin, “Unsolved problems of ‘precision.’ Part 1,” Glavn. Metrolog, No. 3, 5–7 (2003).
21.
Zurück zum Zitat S. F. Levin, “Unsolved problems of ‘precision.’ Part 2,” Glavn. Metrolog, No. 4, 44–54 (2003). S. F. Levin, “Unsolved problems of ‘precision.’ Part 2,” Glavn. Metrolog, No. 4, 44–54 (2003).
22.
Zurück zum Zitat S. F. Levin, “Unsolved problems of ‘precision.’ Part 3,” Glavn. Metrolog, No. 1, 44–53 (2004). S. F. Levin, “Unsolved problems of ‘precision.’ Part 3,” Glavn. Metrolog, No. 1, 44–53 (2004).
23.
Zurück zum Zitat S. F. Levin, “Unsolved problems of ‘precision.’ Part 4,” Glavn. Metrolog, No. 3, 52–56 (2004). S. F. Levin, “Unsolved problems of ‘precision.’ Part 4,” Glavn. Metrolog, No. 3, 52–56 (2004).
24.
Zurück zum Zitat S. F. Levin, “Unsolved problems of ‘precision.’ Part 5,” Glavn. Metrolog, No. 1, 19–26 (2005). S. F. Levin, “Unsolved problems of ‘precision.’ Part 5,” Glavn. Metrolog, No. 1, 19–26 (2005).
25.
Zurück zum Zitat S. F. Levin, “Unsolved problems of ‘precision.’ Part 6,” Glavn. Metrolog, No. 3, 20–28 (2005). S. F. Levin, “Unsolved problems of ‘precision.’ Part 6,” Glavn. Metrolog, No. 3, 20–28 (2005).
26.
Zurück zum Zitat M. Cox and P. Harris, “Basic assumptions of Appendix 1 to the Guide to the Expression of Uncertainty in Measurement,” Izmer. Tekhn., No. 4, 17–24 (2005). M. Cox and P. Harris, “Basic assumptions of Appendix 1 to the Guide to the Expression of Uncertainty in Measurement,” Izmer. Tekhn., No. 4, 17–24 (2005).
27.
Zurück zum Zitat C. Ehrlich, R. Dybkaer, and W. Wöger, OIML Bull., 23–35 (April, 2007). C. Ehrlich, R. Dybkaer, and W. Wöger, OIML Bull., 23–35 (April, 2007).
28.
Zurück zum Zitat C. Ehrlich, R. Dybkaer, and W. Wöger, “Evolution of philosophy and the interpretation of the concept of ‘measurement’,” Glavn. Metrolog, No. 1, 11–30 (2016). C. Ehrlich, R. Dybkaer, and W. Wöger, “Evolution of philosophy and the interpretation of the concept of ‘measurement’,” Glavn. Metrolog, No. 1, 11–30 (2016).
30.
Zurück zum Zitat S. F. Levin, “Metrology: concepts and terms, phraseologisms and catachreses. Part 1,” Kontr.– Izmer. Prib. Sist., No. 1, 35–38 (2017). S. F. Levin, “Metrology: concepts and terms, phraseologisms and catachreses. Part 1,” Kontr.Izmer. Prib. Sist., No. 1, 35–38 (2017).
31.
Zurück zum Zitat S. F. Levin, “Metrology: concepts and terms, phraseologisms and catachreses. Part 2,” Kontr.– Izmer. Prib. Sist., No. 2, 35–38 (2017). S. F. Levin, “Metrology: concepts and terms, phraseologisms and catachreses. Part 2,” Kontr.Izmer. Prib. Sist., No. 2, 35–38 (2017).
32.
Zurück zum Zitat S. F. Levin, “The concept of uncertainty – Theory of errors: Philosophical dispute and mathematical results,” Kontr.– Izmer. Prib. Sist., No. 4, 32–36 (2018). S. F. Levin, “The concept of uncertainty – Theory of errors: Philosophical dispute and mathematical results,” Kontr.Izmer. Prib. Sist., No. 4, 32–36 (2018).
34.
Zurück zum Zitat Guide to the Expression of Uncertainty in Measurement [Russian translation], VNIIM, St. Petersburg (1999). Guide to the Expression of Uncertainty in Measurement [Russian translation], VNIIM, St. Petersburg (1999).
35.
Zurück zum Zitat S. F. Levin, “Is it possible to convert error into uncertainty ‘precisely’?” Zakonodat. Prikl. Metrol., No. 3, 18–25 (2017). S. F. Levin, “Is it possible to convert error into uncertainty ‘precisely’?” Zakonodat. Prikl. Metrol., No. 3, 18–25 (2017).
36.
Zurück zum Zitat Development of Research on Calibration of Measurement Instruments: Report of a Working Group, RSPP, Moscow (2016). Development of Research on Calibration of Measurement Instruments: Report of a Working Group, RSPP, Moscow (2016).
37.
Zurück zum Zitat S. F. Levin, “Mathematical theory of measurement problems. Part 10. Method of joint measurements,” Kontr.– Izmer. Prib. Sist., No. 3, 23–24 (2006). S. F. Levin, “Mathematical theory of measurement problems. Part 10. Method of joint measurements,” Kontr.Izmer. Prib. Sist., No. 3, 23–24 (2006).
38.
Zurück zum Zitat S. F. Levin, “Mathematical theory of measurement problems. Part 10. Method of joint measurements,” Kontr.– Izmer. Prib. Sist., No. 4, 32–36 (2006). S. F. Levin, “Mathematical theory of measurement problems. Part 10. Method of joint measurements,” Kontr.Izmer. Prib. Sist., No. 4, 32–36 (2006).
39.
Zurück zum Zitat S. F. Levin, “Mathematical theory of measurement problems. Part 10. Method of joint measurements,” Kontr.– Izmer. Prib. Sist., No. 5, 33–34 (2006). S. F. Levin, “Mathematical theory of measurement problems. Part 10. Method of joint measurements,” Kontr.Izmer. Prib. Sist., No. 5, 33–34 (2006).
40.
Zurück zum Zitat S. F. Levin, “Measurement problem of identification of error function,” Zakonodat. Prikl. Metrol., No. 4, 27–33 (2016). S. F. Levin, “Measurement problem of identification of error function,” Zakonodat. Prikl. Metrol., No. 4, 27–33 (2016).
41.
Zurück zum Zitat S. F. Levin, “Statistical procedures of control in high-precision measurements,” Kontr.– Izmer. Prib. Sist., No. 3, 8–11 (2018). S. F. Levin, “Statistical procedures of control in high-precision measurements,” Kontr.Izmer. Prib. Sist., No. 3, 8–11 (2018).
42.
Zurück zum Zitat S. F. Levin, “Calibration of measurement instruments – Three solutions of the same measurement problem,” Kontr.– Izmer. Prib. Sist., No. 1, 35–38 (2018). S. F. Levin, “Calibration of measurement instruments – Three solutions of the same measurement problem,” Kontr.Izmer. Prib. Sist., No. 1, 35–38 (2018).
43.
Zurück zum Zitat L. N. Bol’shev and N. V. Smirnov, Tables of Mathematical Statistics, Nauka, Moscow (1983), 3rd ed. L. N. Bol’shev and N. V. Smirnov, Tables of Mathematical Statistics, Nauka, Moscow (1983), 3rd ed.
44.
Zurück zum Zitat M. N. Selivanov, A. E. Fridman, and Zh. F. Kudryashova, Quality of Measurements, Lenizdat, Leningrad (1987). M. N. Selivanov, A. E. Fridman, and Zh. F. Kudryashova, Quality of Measurements, Lenizdat, Leningrad (1987).
45.
Zurück zum Zitat P. V. Novitskij and I. A. Zograf, Estimation of Errors of the Results of Measurements, Energoatomizdat, Leningrad (1985). P. V. Novitskij and I. A. Zograf, Estimation of Errors of the Results of Measurements, Energoatomizdat, Leningrad (1985).
Metadaten
Titel
Inadequacy of Mathematical Models of Measurement Objects and Calculations of Risk Based On the Use of Gost ISO/IEC 17025–2019
verfasst von
S. F. Levin
Publikationsdatum
20.11.2020
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 7/2020
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01819-8