Skip to main content

2013 | OriginalPaper | Buchkapitel

4. Inclusions, Inhomogeneities and Cavities

verfasst von : George J. Dvorak

Erschienen in: Micromechanics of Composite Materials

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Overall mechanical properties and local strain and stress field averages, caused in individual phases of heterogeneous solids by remotely applied uniform strain or stress, are often derived from estimates of local fields in ellipsoidal homogeneous inclusions and inhomogeneities, bonded to a large volume of a surrounding matrix or ‘comparison medium’. The attraction of this approach lies in the relative simplicity of evaluation of the local fields, and in the adaptability of ellipsoidal shapes, such as prolate or oblate ellipsoids, spheroids, cylinders, spheres, penny-shaped discs or slits, to represent either short or long fibers, particles, voids and cracks of different shapes. Transition from local fields in a single inhomogeneity to those in interacting inhomogeneities comprising composite aggregates and polycrystals is accomplished, in part, by assigning certain properties to the comparison medium, as shown in Chaps.​ 6 and 7.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arfken, G. B., & Weber, H. J. (1995). Mathematical methods for physicists. San Diego: Academic. Arfken, G. B., & Weber, H. J. (1995). Mathematical methods for physicists. San Diego: Academic.
Zurück zum Zitat Asaro, R. J., & Barnett, D. M. (1975). The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. Journal of the Mechanics and Physics of Solids, 23, 77–83.CrossRefMATH Asaro, R. J., & Barnett, D. M. (1975). The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion. Journal of the Mechanics and Physics of Solids, 23, 77–83.CrossRefMATH
Zurück zum Zitat Bacon, D. J., Barnett, D. M., & Scattergood, R. O. (1979). Anisotropic continuum theory of lattice defects. Progress in Material Science, 23, 51–262.CrossRef Bacon, D. J., Barnett, D. M., & Scattergood, R. O. (1979). Anisotropic continuum theory of lattice defects. Progress in Material Science, 23, 51–262.CrossRef
Zurück zum Zitat Barnett, D. M. (1972). The precise evaluation of derivatives of the anisotropic elastic Green’s functions. Physica Status Solidi, 49, 741–748.CrossRef Barnett, D. M. (1972). The precise evaluation of derivatives of the anisotropic elastic Green’s functions. Physica Status Solidi, 49, 741–748.CrossRef
Zurück zum Zitat Benveniste, Y. (1992). The determination of the elastic and electric fields in a piezoelectric inhomogeneity. Journal of Applied Physics, 72, 1086–1095.CrossRef Benveniste, Y. (1992). The determination of the elastic and electric fields in a piezoelectric inhomogeneity. Journal of Applied Physics, 72, 1086–1095.CrossRef
Zurück zum Zitat Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.CrossRefMATH Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.CrossRefMATH
Zurück zum Zitat Chen, T. (1993a). Green’s functions and the non-uniform transformation problem in a piezoelectric medium. Mechanics Research Communications, 20, 271–278.MathSciNetCrossRefMATH Chen, T. (1993a). Green’s functions and the non-uniform transformation problem in a piezoelectric medium. Mechanics Research Communications, 20, 271–278.MathSciNetCrossRefMATH
Zurück zum Zitat Chen, T. (1993b). The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium. International Journal of Solids and Structures, 30, 1983–1995.CrossRefMATH Chen, T. (1993b). The rotation of a rigid ellipsoidal inclusion embedded in an anisotropic piezoelectric medium. International Journal of Solids and Structures, 30, 1983–1995.CrossRefMATH
Zurück zum Zitat Chen, T. (1994). Some exact relations of inclusions in piezoelectric media. International Journal of Engineering Science, 32, 533–556. Chen, T. (1994). Some exact relations of inclusions in piezoelectric media. International Journal of Engineering Science, 32, 533–556.
Zurück zum Zitat Chen, T., & Lin, F. Z. (1993). Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions. Mechanics Research Communications, 20, 501–506.CrossRefMATH Chen, T., & Lin, F. Z. (1993). Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions. Mechanics Research Communications, 20, 501–506.CrossRefMATH
Zurück zum Zitat Deeg, W.F. (1980). The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D. Dissertation. Stanford University. Deeg, W.F. (1980). The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D. Dissertation. Stanford University.
Zurück zum Zitat Dunn, M. L. (1994). Electroelastic Green’s functions for transversely isotropic piezo-electric media and their applications to the solutions of inclusion and inhomogeneity problems. International Journal of Engineering Science, 32, 119–131.MathSciNetCrossRefMATH Dunn, M. L. (1994). Electroelastic Green’s functions for transversely isotropic piezo-electric media and their applications to the solutions of inclusion and inhomogeneity problems. International Journal of Engineering Science, 32, 119–131.MathSciNetCrossRefMATH
Zurück zum Zitat Dunn, M. L., & Taya, M. (1993). Analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proceedings of the Royal Society of London A, 443, 265–287.CrossRefMATH Dunn, M. L., & Taya, M. (1993). Analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proceedings of the Royal Society of London A, 443, 265–287.CrossRefMATH
Zurück zum Zitat Dvorak, G. J., & Zhang, J. (2001). Transformation field analysis of damage evolution in composite materials. Journal of the Mechanics and Physics Solids, 49, 2517–2541.CrossRefMATH Dvorak, G. J., & Zhang, J. (2001). Transformation field analysis of damage evolution in composite materials. Journal of the Mechanics and Physics Solids, 49, 2517–2541.CrossRefMATH
Zurück zum Zitat Einstein, A. (1905). Eine neue Berechnung der Moleküldimensionen. Annales de Physique, 19, 289–306. Einstein, A. (1905). Eine neue Berechnung der Moleküldimensionen. Annales de Physique, 19, 289–306.
Zurück zum Zitat Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH
Zurück zum Zitat Eshelby, J. D. (1961). Elastic inclusions and inhomogeneities. In I. N. Sneddon, & R. Hill (Eds.), Progress in solid mechanics (Vol. 2, Chap. III). Amsterdam: North-Holland, pp. 89–140. Eshelby, J. D. (1961). Elastic inclusions and inhomogeneities. In I. N. Sneddon, & R. Hill (Eds.), Progress in solid mechanics (Vol. 2, Chap. III). Amsterdam: North-Holland, pp. 89–140.
Zurück zum Zitat Fredholm, I. (1900). Sur les equations de l’equilibre d’un corps solidi elastique. Acta Mathematica, 23, 1–42.MathSciNetCrossRef Fredholm, I. (1900). Sur les equations de l’equilibre d’un corps solidi elastique. Acta Mathematica, 23, 1–42.MathSciNetCrossRef
Zurück zum Zitat Gavazzi, A. C., & Lagoudas, D. C. (1990). On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational Mechanics, 7, 13–19.CrossRef Gavazzi, A. C., & Lagoudas, D. C. (1990). On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational Mechanics, 7, 13–19.CrossRef
Zurück zum Zitat Ghahremani, F. (1977). Numerical evaluation of the stresses and strains in ellipsoidalinclusions in an anisotropic elastic material. Mechanics Research Communications, 4, 89–91.CrossRef Ghahremani, F. (1977). Numerical evaluation of the stresses and strains in ellipsoidalinclusions in an anisotropic elastic material. Mechanics Research Communications, 4, 89–91.CrossRef
Zurück zum Zitat Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH
Zurück zum Zitat Hill, R. (1965b). Theory of mechanical properties of fibre-strengthened materials – III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13, 189–198.CrossRef Hill, R. (1965b). Theory of mechanical properties of fibre-strengthened materials – III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13, 189–198.CrossRef
Zurück zum Zitat Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef
Zurück zum Zitat Hirose, Y., Mura, T., & Shodja, H. M. (1996). Inclusion problems. Applied Mechanics Reviews, 49, S118–S127.CrossRef Hirose, Y., Mura, T., & Shodja, H. M. (1996). Inclusion problems. Applied Mechanics Reviews, 49, S118–S127.CrossRef
Zurück zum Zitat Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14, 189–206.CrossRef Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14, 189–206.CrossRef
Zurück zum Zitat Huang, J. H., & Yu, J. S. (1994). Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Composites Engineering, 4, 1169–1182.CrossRef Huang, J. H., & Yu, J. S. (1994). Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Composites Engineering, 4, 1169–1182.CrossRef
Zurück zum Zitat Indenbom, V. L., & Orlov, S. S. (1968). Construction of Green’s function in terms of Green’s function of lower dimension. ASME Journal of Applied Mechanics, 32, 414–420.MathSciNetMATH Indenbom, V. L., & Orlov, S. S. (1968). Construction of Green’s function in terms of Green’s function of lower dimension. ASME Journal of Applied Mechanics, 32, 414–420.MathSciNetMATH
Zurück zum Zitat Ju, J. W., & Zhang, X. D. (1998). Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. International Journal of Solids and Structures, 35, 941–960.CrossRefMATH Ju, J. W., & Zhang, X. D. (1998). Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. International Journal of Solids and Structures, 35, 941–960.CrossRefMATH
Zurück zum Zitat Kawashita, M., & Nozaki, H. (2001). Eshelby tensor of a polygonal inclusion and its special properties. Journal of Elasticity, 64, 71–84.MathSciNetCrossRefMATH Kawashita, M., & Nozaki, H. (2001). Eshelby tensor of a polygonal inclusion and its special properties. Journal of Elasticity, 64, 71–84.MathSciNetCrossRefMATH
Zurück zum Zitat Kinoshita, N., & Mura, T. (1971). Elastic fields of inclusions in anisotropic media. Physica Status Solidi, 5, 759–768.CrossRef Kinoshita, N., & Mura, T. (1971). Elastic fields of inclusions in anisotropic media. Physica Status Solidi, 5, 759–768.CrossRef
Zurück zum Zitat Kouris, D. A., & Mura, T. (1989). The elastic field of a hemispherical inhomogeneity at the free surface of an elastic half space. Journal of the Mechanics and Physics of Solids, 37, 365–379.CrossRefMATH Kouris, D. A., & Mura, T. (1989). The elastic field of a hemispherical inhomogeneity at the free surface of an elastic half space. Journal of the Mechanics and Physics of Solids, 37, 365–379.CrossRefMATH
Zurück zum Zitat Kröner, E. (1953). Das fundamental Integral der anisotropen elastischen Differential-gleichungen. Zeitschrift für Physik, 136, 402–410.CrossRefMATH Kröner, E. (1953). Das fundamental Integral der anisotropen elastischen Differential-gleichungen. Zeitschrift für Physik, 136, 402–410.CrossRefMATH
Zurück zum Zitat Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef
Zurück zum Zitat Kuhn, R., Michelitsch, T., Levin, V. M., & Vakulennko, A. A. (2002). The analogue of the Eshelby tensor for a piezoelectric spheroidal inclusion in the hexagonal electroelastic medium. Zeitschrift für Angewandte Mathematik und Physik, 53, 584–602.CrossRefMATH Kuhn, R., Michelitsch, T., Levin, V. M., & Vakulennko, A. A. (2002). The analogue of the Eshelby tensor for a piezoelectric spheroidal inclusion in the hexagonal electroelastic medium. Zeitschrift für Angewandte Mathematik und Physik, 53, 584–602.CrossRefMATH
Zurück zum Zitat Laws, N. (1977). The determination of stress and strain concentrations in an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity, 7, 91–97.MathSciNetCrossRefMATH Laws, N. (1977). The determination of stress and strain concentrations in an ellipsoidal inclusion in an anisotropic material. Journal of Elasticity, 7, 91–97.MathSciNetCrossRefMATH
Zurück zum Zitat Laws, N. (1985). A note on penny-shaped cracks in transversely isotropic materials. Mechanics of Materials, 4, 209–212.CrossRef Laws, N. (1985). A note on penny-shaped cracks in transversely isotropic materials. Mechanics of Materials, 4, 209–212.CrossRef
Zurück zum Zitat Lee, V. G. (2002). Evaluation of the three dimensional elastic Green’s function in anisotropic cubic media. International Journal of Engineering Science, 40, 1349–1361.CrossRef Lee, V. G. (2002). Evaluation of the three dimensional elastic Green’s function in anisotropic cubic media. International Journal of Engineering Science, 40, 1349–1361.CrossRef
Zurück zum Zitat Lifshitz, I. M., & Rozenzweig, L. N. (1947). On the construction of the Green’s tensor for the basic equation of the theory of elasticity of an anisotropic infinite medium. Zh Eksp Theor Fiz, 17, 783–791. Lifshitz, I. M., & Rozenzweig, L. N. (1947). On the construction of the Green’s tensor for the basic equation of the theory of elasticity of an anisotropic infinite medium. Zh Eksp Theor Fiz, 17, 783–791.
Zurück zum Zitat Liu, L. P. (2009). Solutions to the Eshelby conjectures. Proceedings of the Royal Society of London, A464, 573–594. Liu, L. P. (2009). Solutions to the Eshelby conjectures. Proceedings of the Royal Society of London, A464, 573–594.
Zurück zum Zitat Liu, L. P., James, R. D., & Leo, P. H. (2006). Magnetostrictive composites in the dilute limit. Journal of the Mechanics and Physics of Solids, 54, 951–974.MathSciNetCrossRefMATH Liu, L. P., James, R. D., & Leo, P. H. (2006). Magnetostrictive composites in the dilute limit. Journal of the Mechanics and Physics of Solids, 54, 951–974.MathSciNetCrossRefMATH
Zurück zum Zitat Lubarda, V. A., & Markenscoff, X. (1998). On the absence of Eshelby property for non-ellipsoidal inclusions. International Journal of Solids and Structures, 35, 3405–3411.MathSciNetCrossRefMATH Lubarda, V. A., & Markenscoff, X. (1998). On the absence of Eshelby property for non-ellipsoidal inclusions. International Journal of Solids and Structures, 35, 3405–3411.MathSciNetCrossRefMATH
Zurück zum Zitat Markenscoff, X. (1998). Inclusions with constant eigenstress. Journal of the Mechanics and Physics of Solids, 46, 2297–2301.MathSciNetCrossRefMATH Markenscoff, X. (1998). Inclusions with constant eigenstress. Journal of the Mechanics and Physics of Solids, 46, 2297–2301.MathSciNetCrossRefMATH
Zurück zum Zitat Masson, R. (2008). New explicit expressions of the Hill polarization tensor for general anisotropic elastic solids. International Journal of Solids and Structures, 45, 757–769.CrossRefMATH Masson, R. (2008). New explicit expressions of the Hill polarization tensor for general anisotropic elastic solids. International Journal of Solids and Structures, 45, 757–769.CrossRefMATH
Zurück zum Zitat Michelitsch, T., & Levin, V. M. (2000). Inclusions and inhomogeneities in electroelastic media with hexagonal symmetry. European Physical Journal, B14, 527–533.CrossRef Michelitsch, T., & Levin, V. M. (2000). Inclusions and inhomogeneities in electroelastic media with hexagonal symmetry. European Physical Journal, B14, 527–533.CrossRef
Zurück zum Zitat Mikata, Y. (2000). Determination of piezoelectric Eshelby tensor in transversely isotropic solids. International Journal of Engineering Science, 38, 605–641.MathSciNetCrossRefMATH Mikata, Y. (2000). Determination of piezoelectric Eshelby tensor in transversely isotropic solids. International Journal of Engineering Science, 38, 605–641.MathSciNetCrossRefMATH
Zurück zum Zitat Milgrom, M., & Shtrikman, S. (1992). The energy of inclusions in linear media: Exact shape independent relations. Journal of the Mechanics and Physics of Solids, 40, 927–937.MathSciNetCrossRefMATH Milgrom, M., & Shtrikman, S. (1992). The energy of inclusions in linear media: Exact shape independent relations. Journal of the Mechanics and Physics of Solids, 40, 927–937.MathSciNetCrossRefMATH
Zurück zum Zitat Moschovidis, Z. A., & Mura, T. (1975). Two ellipsoidal inhomogeneities by the equivalent inclusion method. Journal of Applied Mechanics, 42, 847–852.CrossRefMATH Moschovidis, Z. A., & Mura, T. (1975). Two ellipsoidal inhomogeneities by the equivalent inclusion method. Journal of Applied Mechanics, 42, 847–852.CrossRefMATH
Zurück zum Zitat Mura, T. (1987). Micromechanics of defects in solids (2nd ed.). Dordrecht: Martinus Nijhoff.CrossRef Mura, T. (1987). Micromechanics of defects in solids (2nd ed.). Dordrecht: Martinus Nijhoff.CrossRef
Zurück zum Zitat Mura, T. (1988). Inclusion problems. Applied Mechanics Reviews, 41, 15–20.CrossRef Mura, T. (1988). Inclusion problems. Applied Mechanics Reviews, 41, 15–20.CrossRef
Zurück zum Zitat Mura, T., & Kinoshita, N. (1971). Green’s functions for anisotropic elasticity. Physica Status Solidi, 47, 607–618.CrossRef Mura, T., & Kinoshita, N. (1971). Green’s functions for anisotropic elasticity. Physica Status Solidi, 47, 607–618.CrossRef
Zurück zum Zitat Nemat-Nasser, S., & Hori, M. (1999). Universal bounds for overall properties of linear and nonlinear heterogeneous solids. Journal of Engineering Materials and Technology, 117, 412–432.CrossRef Nemat-Nasser, S., & Hori, M. (1999). Universal bounds for overall properties of linear and nonlinear heterogeneous solids. Journal of Engineering Materials and Technology, 117, 412–432.CrossRef
Zurück zum Zitat Nozaki, H., & Taya, M. (1997). Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. ASME Journal of Applied Mechanics, 64, 495–502.CrossRefMATH Nozaki, H., & Taya, M. (1997). Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. ASME Journal of Applied Mechanics, 64, 495–502.CrossRefMATH
Zurück zum Zitat Pan, Y. C., & Chou, T. W. (1976). Point force solution for an infinite transversely isotropic solid. ASME Journal of Applied Mechanics, 43, 608–612.CrossRefMATH Pan, Y. C., & Chou, T. W. (1976). Point force solution for an infinite transversely isotropic solid. ASME Journal of Applied Mechanics, 43, 608–612.CrossRefMATH
Zurück zum Zitat Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH
Zurück zum Zitat Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1989). Numerical recipes. New York: Cambridge University Press.MATH Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1989). Numerical recipes. New York: Cambridge University Press.MATH
Zurück zum Zitat Rice, J. R., & Cleary, M. P. (1976). Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics, 14, 227–241.CrossRef Rice, J. R., & Cleary, M. P. (1976). Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics, 14, 227–241.CrossRef
Zurück zum Zitat Roach, G. F. (1982). Green’s functions. New York: Cambridge University Press.MATH Roach, G. F. (1982). Green’s functions. New York: Cambridge University Press.MATH
Zurück zum Zitat Rodin, G. (1996). Eshelby’s inclusion problem for polygons and polyhedral. Journal of the Mechanics and Physics of Solids, 44, 1977–1995.CrossRef Rodin, G. (1996). Eshelby’s inclusion problem for polygons and polyhedral. Journal of the Mechanics and Physics of Solids, 44, 1977–1995.CrossRef
Zurück zum Zitat Sternberg, E. (1958). Three-dimensional stress concentrations in the theory of elasticity. Applied Mechanics Reviews, 11, 1–4. Sternberg, E. (1958). Three-dimensional stress concentrations in the theory of elasticity. Applied Mechanics Reviews, 11, 1–4.
Zurück zum Zitat Suvorov, A. P., & Dvorak, G. J. (2002). Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures, 39, 5659–5678.CrossRefMATH Suvorov, A. P., & Dvorak, G. J. (2002). Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures, 39, 5659–5678.CrossRefMATH
Zurück zum Zitat Synge, J. L. (1957). The hypercircle in mathematical physics. New York: Cambridge University Press.MATH Synge, J. L. (1957). The hypercircle in mathematical physics. New York: Cambridge University Press.MATH
Zurück zum Zitat Tanaka, K., & Mori, M. (1972). Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2, 199–200.CrossRef Tanaka, K., & Mori, M. (1972). Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2, 199–200.CrossRef
Zurück zum Zitat Tanaka, K., & Mura, T. (1982). A theory of fatigue crack initiation at inclusions. Metallurgical Transactions, 13A, 117–123. Tanaka, K., & Mura, T. (1982). A theory of fatigue crack initiation at inclusions. Metallurgical Transactions, 13A, 117–123.
Zurück zum Zitat Ting, T. C. T. (1996). Anisotropic elasticity: Theory and applications. Oxford: Oxford University Press.MATH Ting, T. C. T. (1996). Anisotropic elasticity: Theory and applications. Oxford: Oxford University Press.MATH
Zurück zum Zitat Ting, T. C. T. (2000). Recent developments in anisotropic elasticity. International Journal of Solids and Structures, 37, 401–409.MathSciNetCrossRefMATH Ting, T. C. T. (2000). Recent developments in anisotropic elasticity. International Journal of Solids and Structures, 37, 401–409.MathSciNetCrossRefMATH
Zurück zum Zitat Ting, T. C. T., & Lee, V. G. (1997). The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids. Quarterly Journal of Mechanics and Applied Mathematics, 50, 407–426.MathSciNetCrossRefMATH Ting, T. C. T., & Lee, V. G. (1997). The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids. Quarterly Journal of Mechanics and Applied Mathematics, 50, 407–426.MathSciNetCrossRefMATH
Zurück zum Zitat Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH
Zurück zum Zitat Walpole, L. J. (1977). The determination of the elastic field of an ellipsoidal inclusion in an anisotropic medium. Mathematical Proceedings of the Cambridge Philosophical Society, 81, 283–289.MathSciNetCrossRefMATH Walpole, L. J. (1977). The determination of the elastic field of an ellipsoidal inclusion in an anisotropic medium. Mathematical Proceedings of the Cambridge Philosophical Society, 81, 283–289.MathSciNetCrossRefMATH
Zurück zum Zitat Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242. Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242.
Zurück zum Zitat Walpole, L. J. (1985a). The stress-strain law of a textured aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33, 363–370.CrossRefMATH Walpole, L. J. (1985a). The stress-strain law of a textured aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33, 363–370.CrossRefMATH
Zurück zum Zitat Walpole, L. J. (1985b). Evaluation of the elastic moduli of a transversely isotropic aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33(6), 623–636.CrossRefMATH Walpole, L. J. (1985b). Evaluation of the elastic moduli of a transversely isotropic aggregate of cubic crystals. Journal of the Mechanics and Physics of Solids, 33(6), 623–636.CrossRefMATH
Zurück zum Zitat Willis, J. R. (1964). Anisotropic elastic inclusion problems. Quarterly Journal of Mechanics and Applied Mathematics, 17, 157–174.MathSciNetCrossRefMATH Willis, J. R. (1964). Anisotropic elastic inclusion problems. Quarterly Journal of Mechanics and Applied Mathematics, 17, 157–174.MathSciNetCrossRefMATH
Zurück zum Zitat Willis, J. R. (1965). The elastic interaction energy of dislocation loops in anisotropic media. Quarterly Journal of Mechanics and Applied Mathematics, 18, 419–433.MathSciNetCrossRef Willis, J. R. (1965). The elastic interaction energy of dislocation loops in anisotropic media. Quarterly Journal of Mechanics and Applied Mathematics, 18, 419–433.MathSciNetCrossRef
Zurück zum Zitat Willis, J. R. (1970). Stress fields produced by dislocations in anisotropic media. Philosophical Magazine, 21, 931–949.CrossRefMATH Willis, J. R. (1970). Stress fields produced by dislocations in anisotropic media. Philosophical Magazine, 21, 931–949.CrossRefMATH
Zurück zum Zitat Willis, J. R. (1980). A polarization approach to the scattering of elastic waves – I. Scattering by a single inclusion. II. Multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28, 287–327.MathSciNetCrossRefMATH Willis, J. R. (1980). A polarization approach to the scattering of elastic waves – I. Scattering by a single inclusion. II. Multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28, 287–327.MathSciNetCrossRefMATH
Zurück zum Zitat Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press. Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press.
Zurück zum Zitat Withers, P. J. (1989). The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine, 59, 759–781.CrossRef Withers, P. J. (1989). The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine, 59, 759–781.CrossRef
Zurück zum Zitat Willis, J.R. (1975). The interaction of gas bubbles in an anisotropic elastic solid. J. Mech. Phys. Solids. 23, 129–138.CrossRef Willis, J.R. (1975). The interaction of gas bubbles in an anisotropic elastic solid. J. Mech. Phys. Solids. 23, 129–138.CrossRef
Zurück zum Zitat Zuiker, J. R., & Dvorak, G. J. (1994). The effective properties of functionally graded composites-I. Extension of the Mori-Tanaka method to linearly varying fields. Composites Engineering, 4, 19–35.CrossRef Zuiker, J. R., & Dvorak, G. J. (1994). The effective properties of functionally graded composites-I. Extension of the Mori-Tanaka method to linearly varying fields. Composites Engineering, 4, 19–35.CrossRef
Metadaten
Titel
Inclusions, Inhomogeneities and Cavities
verfasst von
George J. Dvorak
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.