Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2018 | Ausgabe 5/2019 Open Access

Mobile Networks and Applications 5/2019

Incorporating FAIR into Bayesian Network for Numerical Assessment of Loss Event Frequencies of Smart Grid Cyber Threats

Zeitschrift:
Mobile Networks and Applications > Ausgabe 5/2019
Autoren:
Anhtuan Le, Yue Chen, Kok Keong Chai, Alexandr Vasenev, Lorena Montoya

Abstract

In today’s cyber world, assessing security threats before implementing smart grids is essential to identify and mitigate the risks. Loss Event Frequency (LEF) is a concept provided by the well-known Factor Analysis of Information Risk (FAIR) framework to assess and categorize the cyber threats into five classes, based on their severity. As the number of threats is increasing, it is possible that many threats might fall under the same LEF category, but FAIR cannot provide any further mechanism to rank them. In this paper, we propose a method to incorporate the FAIR’s LEF into Bayesian Network (BN) to derive the numerical assessments to rank the threat severity. The BN probabilistic relations are inferred from the FAIR look-up tables to reflect and conserve the FAIR appraisal. Our approach extends FAIR functionality by providing a more detailed ranking, allowing fuzzy inputs, enabling the illustration of input-output relations, and identifying the most influential element of a threat to improve the effectiveness of countermeasure investment. Such improvements are demonstrated by applying the method to assess cyber threats in a smart grid robustness research project (IRENE).

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Mobile Networks and Applications 5/2019 Zur Ausgabe