Skip to main content

10.09.2024 | Research

Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction

verfasst von: Yandan Zheng, Luu Anh Tuan

Erschienen in: Cognitive Computation

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

From an unstructured text, relation extraction (RE) predicts semantic relationships between pairs of entities. The process of labeling tokens and phrases can be very expensive and require a great deal of time and effort. The low-resource relation extraction (LRE) problem comes into being and is challenging since there are only a limited number of annotated sentences available. Recent research has focused on minimizing the cross-entropy loss between pseudo labels and ground truth or on using external knowledge to make annotations for unlabeled data. Existing methods, however, fail to take into account the semantics of relation types and the information hidden within different relation groups. By drawing inspiration from the process of human interpretation of unstructured documents, we introduce a Template-based Contrastive Learning ( TempCL ). Through the use of template, we limit the model’s attention to the semantic information that is contained in a relation. Then, we employ a contrastive learning strategy using both group-wise and instance-wise perspectives to leverage shared semantic information within the same relation type to achieve a more coherent semantic representation. Particularly, the proposed group-wise contrastive learning minimizes the discrepancy between the template and original sentences in the same label group and maximizes the difference between those from separate label groups under limited annotation settings. Our experiment results on two public datasets show that our model TempCL achieves state-of-the-art results for low-resource relation extraction in comparison to baselines. The relative error reductions range from 0.68 to 1.32%. Our model encourages the feature to be aligned with both the original and template sentences. Using two contrastive losses, we exploit shared semantic information underlying sentences (both original and template) that have the same relation type. We demonstrate that our method reduces the noise caused by tokens that are unrelated and constrains the model’s attention to the tokens that are related.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chen M, Herrera F, Hwang K. Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access. 2018;6:19774–83.CrossRef Chen M, Herrera F, Hwang K. Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access. 2018;6:19774–83.CrossRef
2.
Zurück zum Zitat Wu T, Li X, Li YF, Haffari G, Qi G, Zhu Y, Xu G. Curriculum-meta learning for order-robust continual relation extraction. 2021. arXiv:2101.01926 Wu T, Li X, Li YF, Haffari G, Qi G, Zhu Y, Xu G. Curriculum-meta learning for order-robust continual relation extraction. 2021. arXiv:​2101.​01926
3.
Zurück zum Zitat Zeng W, Lin Y, Liu Z, Sun M. Incorporating relation paths in neural relation extraction. In EMNLP. 2017. p 1768–77. Zeng W, Lin Y, Liu Z, Sun M. Incorporating relation paths in neural relation extraction. In EMNLP. 2017. p 1768–77.
4.
Zurück zum Zitat Zhang Y, Zhong V, Chen D, Angeli G, Manning CD. Position-aware attention and supervised data improve slot filling. In EMNLP. 2017. p 35–45. Zhang Y, Zhong V, Chen D, Angeli G, Manning CD. Position-aware attention and supervised data improve slot filling. In EMNLP. 2017. p 35–45.
5.
Zurück zum Zitat Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In ACL. 2009. p 1003–11. Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In ACL. 2009. p 1003–11.
6.
Zurück zum Zitat Zeng D, Liu K, Chen Y, Zhao J. Distant supervision for relation extraction via piecewise convolutional neural networks. In EMNLP. 2015. p 1753–62. Zeng D, Liu K, Chen Y, Zhao J. Distant supervision for relation extraction via piecewise convolutional neural networks. In EMNLP. 2015. p 1753–62.
7.
Zurück zum Zitat Hu X, Zhang C, Ma F, Liu C, Wen L, Yu PS. Semi-supervised relation extraction via incremental meta self-training. In EMNLP (Findings). 2021. p 487–96. Association for Computational Linguistics. Hu X, Zhang C, Ma F, Liu C, Wen L, Yu PS. Semi-supervised relation extraction via incremental meta self-training. In EMNLP (Findings). 2021. p 487–96. Association for Computational Linguistics.
8.
Zurück zum Zitat Hu X, Zhang C, Yang Y, Li X, Lin L, Wen L, Yu PS. Gradient imitation reinforcement learning for low resource relation extraction. In EMNLP. 2021. p 2737–46. Association for Computational Linguistics. Hu X, Zhang C, Yang Y, Li X, Lin L, Wen L, Yu PS. Gradient imitation reinforcement learning for low resource relation extraction. In EMNLP. 2021. p 2737–46. Association for Computational Linguistics.
9.
Zurück zum Zitat Peng H, Gao T, Han X, Lin Y, Li P, Liu Z, Sun M, Zhou J. Learning from context or names? an empirical study on neural relation extraction. In EMNLP. 2020. p 3661–72. Association for Computational Linguistics. Peng H, Gao T, Han X, Lin Y, Li P, Liu Z, Sun M, Zhou J. Learning from context or names? an empirical study on neural relation extraction. In EMNLP. 2020. p 3661–72. Association for Computational Linguistics.
10.
Zurück zum Zitat Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F. A survey on contrastive self-supervised learning. Technologies. 2021;9(1). Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F. A survey on contrastive self-supervised learning. Technologies. 2021;9(1).
11.
Zurück zum Zitat Qin Y, Lin Y, Takanobu R, Liu Z, Li P, Ji H, Huang M, Sun M, Zhou J. ERICA: improving entity and relation understanding for pre-trained language models via contrastive learning. In ACL/IJCNLP. 2021. p 3350–63. Association for Computational Linguistics. Qin Y, Lin Y, Takanobu R, Liu Z, Li P, Ji H, Huang M, Sun M, Zhou J. ERICA: improving entity and relation understanding for pre-trained language models via contrastive learning. In ACL/IJCNLP. 2021. p 3350–63. Association for Computational Linguistics.
12.
Zurück zum Zitat Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DO, Padó S, Pennacchiotti M, Romano L, Szpakowicz S. Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: SemEval. 2010. p 33–38. Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DO, Padó S, Pennacchiotti M, Romano L, Szpakowicz S. Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: SemEval. 2010. p 33–38.
13.
Zurück zum Zitat Rosenberg C, Hebert M, Schneiderman H. Semi-supervised self-training of object detection models. In WACV/MOTION. 2005. p 29–36. IEEE Computer Society. Rosenberg C, Hebert M, Schneiderman H. Semi-supervised self-training of object detection models. In WACV/MOTION. 2005. p 29–36. IEEE Computer Society.
14.
Zurück zum Zitat Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In NIPS. 2017. p 1195–204. Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In NIPS. 2017. p 1195–204.
15.
Zurück zum Zitat Lin H, Yan J, Qu M, Ren X. Learning dual retrieval module for semi-supervised relation extraction. In WWW. 2019. p 1073–83. ACM. Lin H, Yan J, Qu M, Ren X. Learning dual retrieval module for semi-supervised relation extraction. In WWW. 2019. p 1073–83. ACM.
17.
Zurück zum Zitat Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B. Cohen. Learning latent forests for medical relation extraction. In: Bessiere C, editor, IJCAI. 2020. p 3651–57. Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B. Cohen. Learning latent forests for medical relation extraction. In: Bessiere C, editor, IJCAI. 2020. p 3651–57.
18.
Zurück zum Zitat Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Jurafsky D, Chai J, Schluter N, Tetreault JR, editors, ACL. 2020. p 1546–57. Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Jurafsky D, Chai J, Schluter N, Tetreault JR, editors, ACL. 2020. p 1546–57.
19.
Zurück zum Zitat Yan Y, Li R, Wang S, Zhang F, Wu W, Xu W. Consert: A contrastive framework for self-supervised sentence representation transfer. In: ACL. 2021. p 5065–75. Association for Computational Linguistics. Yan Y, Li R, Wang S, Zhang F, Wu W, Xu W. Consert: A contrastive framework for self-supervised sentence representation transfer. In: ACL. 2021. p 5065–75. Association for Computational Linguistics.
20.
Zurück zum Zitat Gao T, Yao X, Chen D. Simcse: Simple contrastive learning of sentence embeddings. In: EMNLP, 2021. p 6894–10. Association for Computational Linguistics. Gao T, Yao X, Chen D. Simcse: Simple contrastive learning of sentence embeddings. In: EMNLP, 2021. p 6894–10. Association for Computational Linguistics.
21.
Zurück zum Zitat Giorgi JM, Nitski O, Wang B, Bader GD. Declutr: Deep contrastive learning for unsupervised textual representations. In: ACL. 2021. p 879–5. Association for Computational Linguistics. Giorgi JM, Nitski O, Wang B, Bader GD. Declutr: Deep contrastive learning for unsupervised textual representations. In: ACL. 2021. p 879–5. Association for Computational Linguistics.
22.
Zurück zum Zitat Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. Self-guided contrastive learning for BERT sentence representations. In ACL. 2021. p 2528–40. Association for Computational Linguistics. Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. Self-guided contrastive learning for BERT sentence representations. In ACL. 2021. p 2528–40. Association for Computational Linguistics.
23.
Zurück zum Zitat Soares LB, FitzGerald N, Ling J, Kwiatkowski T. Matching the blanks: Distributional similarity for relation learning. In: ACL. 2019. p 2895–905. Soares LB, FitzGerald N, Ling J, Kwiatkowski T. Matching the blanks: Distributional similarity for relation learning. In: ACL. 2019. p 2895–905.
24.
Zurück zum Zitat Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT. 2019. p 4171–86. Association for Computational Linguistics. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT. 2019. p 4171–86. Association for Computational Linguistics.
25.
Zurück zum Zitat Movshovitz-Attias Y, Toshev A, Leung TK, Ioffe S, Singh S. No fuss distance metric learning using proxies. In: ICCV. 2017. p 360–8. IEEE Computer Society. Movshovitz-Attias Y, Toshev A, Leung TK, Ioffe S, Singh S. No fuss distance metric learning using proxies. In: ICCV. 2017. p 360–8. IEEE Computer Society.
26.
Zurück zum Zitat Laine S, Aila T. Temporal ensembling for semi-supervised learning. In: ICLR. 2017. OpenReview.net. Laine S, Aila T. Temporal ensembling for semi-supervised learning. In: ICLR. 2017. OpenReview.net.
27.
Zurück zum Zitat Hu X, Chen J, Meng S, Wen L, Yu PS. Selflre: Self-refining representation learning for low-resource relation extraction. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, 2023. p 2364–68, New York, NY, USA. Association for Computing Machinery. Hu X, Chen J, Meng S, Wen L, Yu PS. Selflre: Self-refining representation learning for low-resource relation extraction. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, 2023. p 2364–68, New York, NY, USA. Association for Computing Machinery.
28.
Zurück zum Zitat Mao B, Jia C, Huang Y, He K, Wu J, Gong T, Li C. Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2022. p 2318–25. Mao B, Jia C, Huang Y, He K, Wu J, Gong T, Li C. Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2022. p 2318–25.
Metadaten
Titel
Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction
verfasst von
Yandan Zheng
Luu Anh Tuan
Publikationsdatum
10.09.2024
Verlag
Springer US
Erschienen in
Cognitive Computation
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10343-8

Premium Partner