Skip to main content
Erschienen in:

16.06.2024 | Original Paper

Increasing efficiency and cost-effectiveness through optimizing the interaction between energy hub systems and distribution networks in modern energy distribution networks

verfasst von: Wenlong Li, Baoxin Yu, Dongyang Chen, Jiaji Li, Gefei Xia

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy hub systems (EHSs) have emerged as critical components in modern energy networks, providing the necessary flexibility to effectively respond to diverse energy needs. These systems operate within distribution networks (DNs), where various input energy carriers undergo conversion into diverse forms of energy, including electricity and heat. This versatility enables energy hub operators (EHOs) to efficiently meet different energy needs while competing with similar EHOs to ensure cost-effective operation. In this article, we present a thorough multi-follower two-level optimization framework (2-LOF) developed to enhance the interaction between energy hubs (EHs) and DNs. The main high-level objective of this framework is to minimize the operating cost of the entire DN while adhering to network constraints. Simultaneously, at a lower level, the focus is on minimizing the total costs incurred by each EH connected to the DN. It is worth noting that each EH has the ability to participate in energy exchange with other EHs, increasing its ability to optimally meet energy demand. The primary objective of this research is to identify the best power exchange tactics between DN and EH, with the overall goal of minimizing the collective operating cost related to EHs and DNs. The resulting 2-LOF represents a nonlinear problem, which needs to consider Karush–Kuhn–Tucker optimal conditions to solve it. To facilitate practical implementation and analysis, the Archimedes optimization algorithm is employed. This model is then evaluated using the IEEE 33-bus test system. Results of our strategic optimization efforts are carefully analyzed, verifying the efficiency and effectiveness of the proposed optimization model in optimizing the coordination between EHs and DNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Majidi M, Zare K (2018) Integration of smart energy hubs in distribution networks under uncertainties and demand response concept. IEEE Trans Power Syst 34(1):566–574CrossRefMATH Majidi M, Zare K (2018) Integration of smart energy hubs in distribution networks under uncertainties and demand response concept. IEEE Trans Power Syst 34(1):566–574CrossRefMATH
2.
Zurück zum Zitat Jin X et al (2016) Optimal day-ahead scheduling of integrated urban energy systems. Appl Energy 180:1–13CrossRefMATH Jin X et al (2016) Optimal day-ahead scheduling of integrated urban energy systems. Appl Energy 180:1–13CrossRefMATH
3.
Zurück zum Zitat Kharrich M et al (2023) An effective design of hybrid renewable energy system using an improved archimedes optimization algorithm: a case study of Farafra, Egypt. Energy Conver Manag 283:116907CrossRefMATH Kharrich M et al (2023) An effective design of hybrid renewable energy system using an improved archimedes optimization algorithm: a case study of Farafra, Egypt. Energy Conver Manag 283:116907CrossRefMATH
4.
Zurück zum Zitat Majidi M, Mohammadi-Ivatloo B, Anvari-Moghaddam A (2019) Optimal robust operation of combined heat and power systems with demand response programs. Appl Therm Eng 149:1359–1369CrossRefMATH Majidi M, Mohammadi-Ivatloo B, Anvari-Moghaddam A (2019) Optimal robust operation of combined heat and power systems with demand response programs. Appl Therm Eng 149:1359–1369CrossRefMATH
5.
Zurück zum Zitat Mirzapour-Kamanaj A et al (2020) Optimal strategic coordination of distribution networks and interconnected energy hubs: a linear multi-follower bi-level optimization model. Int J Electr Power Energy Syst 119:105925CrossRefMATH Mirzapour-Kamanaj A et al (2020) Optimal strategic coordination of distribution networks and interconnected energy hubs: a linear multi-follower bi-level optimization model. Int J Electr Power Energy Syst 119:105925CrossRefMATH
6.
Zurück zum Zitat Abedinia O, Ghasemi-Marzbali A, Nurmanova V, Bagheri M (2021) Optimal strategy for bidding in deregulated-structure of electricity market: a competitive model. In: 2021 IEEE international conference on environment and electrical engineering and 2021 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe), IEEE, pp 1–5 Abedinia O, Ghasemi-Marzbali A, Nurmanova V, Bagheri M (2021) Optimal strategy for bidding in deregulated-structure of electricity market: a competitive model. In: 2021 IEEE international conference on environment and electrical engineering and 2021 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe), IEEE, pp 1–5
7.
Zurück zum Zitat Zhang X, Che L, Shahidehpour M, Alabdulwahab AS, Abusorrah A (2015) Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs. IEEE Trans Smart Grid 8(4):1658–1667CrossRef Zhang X, Che L, Shahidehpour M, Alabdulwahab AS, Abusorrah A (2015) Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs. IEEE Trans Smart Grid 8(4):1658–1667CrossRef
8.
Zurück zum Zitat Wang Q et al (2024) Day-Ahead scheduling of rural integrated energy systems based on distributionally robust optimization theory. Appl Therm Eng 246:123001CrossRefMATH Wang Q et al (2024) Day-Ahead scheduling of rural integrated energy systems based on distributionally robust optimization theory. Appl Therm Eng 246:123001CrossRefMATH
9.
Zurück zum Zitat Nurmanova V et al. (2009) Distribution transformer frequency response analysis: behavior of different statistical indices during inter-disk fault. In: 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems europe (EEEIC/I&CPS Europe), IEEE Nurmanova V et al. (2009) Distribution transformer frequency response analysis: behavior of different statistical indices during inter-disk fault. In: 2019 IEEE international conference on environment and electrical engineering and 2019 IEEE industrial and commercial power systems europe (EEEIC/I&CPS Europe), IEEE
10.
Zurück zum Zitat Li Y et al (2018) Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: a bi-level programming approach via real-time pricing. Appl Energy 232:54–68CrossRefMATH Li Y et al (2018) Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: a bi-level programming approach via real-time pricing. Appl Energy 232:54–68CrossRefMATH
12.
Zurück zum Zitat Kim HY, Kim MK, Kim HJ (2019) Optimal operational scheduling of distribution network with microgrid via bi-level optimization model with energy band. Appl Sci 9(20):4219CrossRefMATH Kim HY, Kim MK, Kim HJ (2019) Optimal operational scheduling of distribution network with microgrid via bi-level optimization model with energy band. Appl Sci 9(20):4219CrossRefMATH
13.
Zurück zum Zitat Huo D, Le Blond S, Gu C, Wei W, Yu D (2018) Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. Int J Electr Power Energy Syst 95:36–46CrossRef Huo D, Le Blond S, Gu C, Wei W, Yu D (2018) Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. Int J Electr Power Energy Syst 95:36–46CrossRef
14.
Zurück zum Zitat Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M, Hajipour E (2013) A decomposed solution to multiple-energy carriers optimal power flow. IEEE Trans Power Syst 29(2):707–716CrossRefMATH Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M, Hajipour E (2013) A decomposed solution to multiple-energy carriers optimal power flow. IEEE Trans Power Syst 29(2):707–716CrossRefMATH
15.
Zurück zum Zitat Bahrami S, Sheikhi A (2015) From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Trans Smart Grid 7(2):650–658MATH Bahrami S, Sheikhi A (2015) From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Trans Smart Grid 7(2):650–658MATH
16.
Zurück zum Zitat Sheikhi A, Rayati M, Bahrami S, Ranjbar AM, Sattari S (2015) A cloud computing framework on demand side management game in smart energy hubs. Int J Electr Power Energy Syst 64:1007–1016CrossRef Sheikhi A, Rayati M, Bahrami S, Ranjbar AM, Sattari S (2015) A cloud computing framework on demand side management game in smart energy hubs. Int J Electr Power Energy Syst 64:1007–1016CrossRef
17.
Zurück zum Zitat Sheikhi A, Bahrami S, Ranjbar AM (2015) An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy 89:490–499CrossRefMATH Sheikhi A, Bahrami S, Ranjbar AM (2015) An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy 89:490–499CrossRefMATH
18.
Zurück zum Zitat Maroufmashat A et al (2015) Modeling and optimization of a network of energy hubs to improve economic and emission considerations. Energy 93:2546–2558CrossRefMATH Maroufmashat A et al (2015) Modeling and optimization of a network of energy hubs to improve economic and emission considerations. Energy 93:2546–2558CrossRefMATH
19.
Zurück zum Zitat Kamyab F, Bahrami S (2016) Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy 106:343–355CrossRefMATH Kamyab F, Bahrami S (2016) Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy 106:343–355CrossRefMATH
20.
Zurück zum Zitat Bidgoli MM et al (2021) Stochastic electrical and thermal energy management of energy hubs integrated with demand response programs and renewable energy: a prioritized multi-objective framework. Electr Power Syst Res 196:107183CrossRefMATH Bidgoli MM et al (2021) Stochastic electrical and thermal energy management of energy hubs integrated with demand response programs and renewable energy: a prioritized multi-objective framework. Electr Power Syst Res 196:107183CrossRefMATH
21.
Zurück zum Zitat Karimi H, Bidgoli MM, Jadid S (2023) Optimal electrical, heating, cooling, and water management of integrated multi-energy systems considering demand-side management. Electr Power Syst Res 220:109353CrossRefMATH Karimi H, Bidgoli MM, Jadid S (2023) Optimal electrical, heating, cooling, and water management of integrated multi-energy systems considering demand-side management. Electr Power Syst Res 220:109353CrossRefMATH
22.
Zurück zum Zitat Bidgoli MM et al (2023) Multi-criteria dispatch optimization of a community energy network with desalination: insights for trading off cost and security of supply. Heliyon 9:e20533CrossRefMATH Bidgoli MM et al (2023) Multi-criteria dispatch optimization of a community energy network with desalination: insights for trading off cost and security of supply. Heliyon 9:e20533CrossRefMATH
23.
Zurück zum Zitat Shademan M, Karimi H, Jadid S (2023) Safe resource management of non-cooperative microgrids based on deep reinforcement learning. Eng Appl Artif Intell 126:106865CrossRefMATH Shademan M, Karimi H, Jadid S (2023) Safe resource management of non-cooperative microgrids based on deep reinforcement learning. Eng Appl Artif Intell 126:106865CrossRefMATH
24.
Zurück zum Zitat Wu L et al (2024) Decomposed particle swarm optimization for optimal scheduling in energy hub considering battery lifetime. Eng Appl Artif Intell 133:108252CrossRefMATH Wu L et al (2024) Decomposed particle swarm optimization for optimal scheduling in energy hub considering battery lifetime. Eng Appl Artif Intell 133:108252CrossRefMATH
25.
Zurück zum Zitat Zhu X, Zeng B, Dong H, Liu J (2020) An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ramping products. Energy 194:116821CrossRef Zhu X, Zeng B, Dong H, Liu J (2020) An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ramping products. Energy 194:116821CrossRef
26.
Zurück zum Zitat Geng S, Vrakopoulou M, Hiskens IA (2020) Optimal capacity design and operation of energy hub systems. Proc IEEE 108(9):1475–1495CrossRefMATH Geng S, Vrakopoulou M, Hiskens IA (2020) Optimal capacity design and operation of energy hub systems. Proc IEEE 108(9):1475–1495CrossRefMATH
27.
Zurück zum Zitat Roustai M, Rayati M, Sheikhi A, Ranjbar A (2018) A scenario-based optimization of smart energy hub operation in a stochastic environment using conditional-value-at-risk. Sustain cities Soc 39:309–316CrossRef Roustai M, Rayati M, Sheikhi A, Ranjbar A (2018) A scenario-based optimization of smart energy hub operation in a stochastic environment using conditional-value-at-risk. Sustain cities Soc 39:309–316CrossRef
28.
Zurück zum Zitat Demissie A, Zhu W, Belachew CT (2017) A multi-objective optimization model for gas pipeline operations. Comput Chem Eng 100:94–103CrossRefMATH Demissie A, Zhu W, Belachew CT (2017) A multi-objective optimization model for gas pipeline operations. Comput Chem Eng 100:94–103CrossRefMATH
29.
Zurück zum Zitat Eladl AA, El-Afifi MI, Saeed MA, El-Saadawi MM (2020) Optimal operation of energy hubs integrated with renewable energy sources and storage devices considering CO2 emissions. Int J Electr Power Energy Syst 117:105719CrossRef Eladl AA, El-Afifi MI, Saeed MA, El-Saadawi MM (2020) Optimal operation of energy hubs integrated with renewable energy sources and storage devices considering CO2 emissions. Int J Electr Power Energy Syst 117:105719CrossRef
30.
Zurück zum Zitat Li Y, Li Z, Wen F, Shahidehpour M (2018) Privacy-preserving optimal dispatch for an integrated power distribution and natural gas system in networked energy hubs. IEEE Trans Sustain Energy 10(4):2028–2038CrossRefMATH Li Y, Li Z, Wen F, Shahidehpour M (2018) Privacy-preserving optimal dispatch for an integrated power distribution and natural gas system in networked energy hubs. IEEE Trans Sustain Energy 10(4):2028–2038CrossRefMATH
31.
Zurück zum Zitat Pang J-S, Fukushima M (2005) Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput Manag Sci 2(1):21–56MathSciNetCrossRefMATH Pang J-S, Fukushima M (2005) Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput Manag Sci 2(1):21–56MathSciNetCrossRefMATH
Metadaten
Titel
Increasing efficiency and cost-effectiveness through optimizing the interaction between energy hub systems and distribution networks in modern energy distribution networks
verfasst von
Wenlong Li
Baoxin Yu
Dongyang Chen
Jiaji Li
Gefei Xia
Publikationsdatum
16.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02519-0