Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.06.2020 | Original Article | Ausgabe 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

Incremental hashing with sample selection using dominant sets

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 12/2020
Autoren:
Wing W. Y. Ng, Xiaoxia Jiang, Xing Tian, Marcello Pelillo, Hui Wang, Sam Kwong
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In the world of big data, large amounts of images are available in social media, corporate and even personal collections. A collection may grow quickly as new images are generated at high rates. The new images may cause changes in the distribution of existing classes or the emergence of new classes, resulting in the collection being dynamic and having concept drift. For efficient image retrieval from an image collection using a query, a hash table consisting of a set of hash functions is needed to transform images into binary hash codes which are used as the basis to find similar images to the query. If the image collection is dynamic, the hash table built at one time step may not work well at the next due to changes in the collection as a result of new images being added. Therefore, the hash table needs to be rebuilt or updated at successive time steps. Incremental hashing (ICH) is the first effective method to deal with the concept drift problem in image retrieval from dynamic collections. In ICH, a new hash table is learned based on newly emerging images only which represent data distribution of the current data environment. The new hash table is used to generate hash codes for all images including old and new ones. Due to the dynamic nature, new images of one class may not be similar to old images of the same class. In order to learn new hash table that preserves within-class similarity in both old and new images, incremental hashing with sample selection using dominant sets (ICHDS) is proposed in this paper, which selects representative samples from each class for training the new hash table. Experimental results show that ICHDS yields better retrieval performance than existing dynamic and static hashing methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Zur Ausgabe