Skip to main content
Erschienen in: Journal of Materials Science 1/2018

29.08.2017 | Metals

Indentation into an Al/Si composite: enhanced dislocation mobility at interface

verfasst von: Zhibo Zhang, Herbert M. Urbassek

Erschienen in: Journal of Materials Science | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using molecular dynamics simulation, we study the indentation of a metal–ceramics (Al/Si) composite and compare it to that of the pure elements. An Al/Si interface running perpendicular to the surface is indented centrally. We find that—due to its higher stiffness and yield strength—Si expands into the Al side. As a consequence, the plasticity on the Al side is enhanced, leading to the formation of complex dislocation networks. On the Si side, the phase transformation from cubic diamond to bct5 structure, and subsequent amorphization near the indenter are accelerated, while the number of dislocations formed in the surviving cubic diamond phase is reduced. In both materials, the mobility of the dislocations is enhanced, in particular because the dislocations glide easily on the interface; as a consequence the composite is softer than the average of its constituents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Alcalá J, Dalmau R, Franke O, Biener M, Biener J, Hodge A (2012) Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Phys Rev Lett 109:075502CrossRef Alcalá J, Dalmau R, Franke O, Biener M, Biener J, Hodge A (2012) Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Phys Rev Lett 109:075502CrossRef
4.
Zurück zum Zitat Baskes MI, Angelo JE, Bisson CL (1994) Atomistic calculations of composite interfaces. Model Simul Mater Sci Eng 2(3A):505–518CrossRef Baskes MI, Angelo JE, Bisson CL (1994) Atomistic calculations of composite interfaces. Model Simul Mater Sci Eng 2(3A):505–518CrossRef
5.
Zurück zum Zitat Bhattacharya S, Riahi AR, Alpas AT (2009) Indentation-induced subsurface damage in silicon particles of Al–Si alloys. Mat Sci Eng A 527:387–396CrossRef Bhattacharya S, Riahi AR, Alpas AT (2009) Indentation-induced subsurface damage in silicon particles of Al–Si alloys. Mat Sci Eng A 527:387–396CrossRef
6.
Zurück zum Zitat Bhushan B, Li X (1997) Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J Mater Res 12:54–63CrossRef Bhushan B, Li X (1997) Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J Mater Res 12:54–63CrossRef
8.
Zurück zum Zitat Cai W, Nix WD (2016) Imperfections in crystalline solids. Cambridge University Press, Cambridge Cai W, Nix WD (2016) Imperfections in crystalline solids. Cambridge University Press, Cambridge
9.
Zurück zum Zitat Chang L, Zhang L (2009) Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads. Mat Sci Eng A 506:125–129CrossRef Chang L, Zhang L (2009) Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads. Mat Sci Eng A 506:125–129CrossRef
10.
Zurück zum Zitat Chen M, Meng-Burany X, Perry TA, Alpas AT (2008) Micromechanisms and mechanics of ultra-mild wear in Al–Si alloys. Acta Mater 56:5605–5616CrossRef Chen M, Meng-Burany X, Perry TA, Alpas AT (2008) Micromechanisms and mechanics of ultra-mild wear in Al–Si alloys. Acta Mater 56:5605–5616CrossRef
11.
Zurück zum Zitat Chrobak D, Kim KH, Kurzydlowski KJ, Nowak R (2013) Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity. Appl Phys Lett 103:072101CrossRef Chrobak D, Kim KH, Kurzydlowski KJ, Nowak R (2013) Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity. Appl Phys Lett 103:072101CrossRef
12.
Zurück zum Zitat Chrobak D, Tymiak N, Beaber A, Ugurlu O, Gerberich WW, Nowak R (2011) Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat Nanotechnol 6:480–484CrossRef Chrobak D, Tymiak N, Beaber A, Ugurlu O, Gerberich WW, Nowak R (2011) Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat Nanotechnol 6:480–484CrossRef
14.
Zurück zum Zitat Domnich V, Gogotsi Y, Dub S (2000) Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl Phys Lett 76(16):2214–2216. doi:10.1063/1.126300 CrossRef Domnich V, Gogotsi Y, Dub S (2000) Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl Phys Lett 76(16):2214–2216. doi:10.​1063/​1.​126300 CrossRef
15.
Zurück zum Zitat Du X, Zhao H, Zhang L, Yang Y, Xu H, Fu H, Li L (2015) Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature. Sci Rep 5:16275. doi:10.1038/srep16275 CrossRef Du X, Zhao H, Zhang L, Yang Y, Xu H, Fu H, Li L (2015) Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature. Sci Rep 5:16275. doi:10.​1038/​srep16275 CrossRef
16.
Zurück zum Zitat Dupont V, Sansoz F (2006) Grain boundary structure evolution in nanocrystalline Al by nanoindentation simulations. In: Materials research society symposium proceedings 903:0903–Z06–05.1 Dupont V, Sansoz F (2006) Grain boundary structure evolution in nanocrystalline Al by nanoindentation simulations. In: Materials research society symposium proceedings 903:0903–Z06–05.1
17.
Zurück zum Zitat Elmadagli M, Perry T, Alpas AT (2007) A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262:79–92CrossRef Elmadagli M, Perry T, Alpas AT (2007) A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262:79–92CrossRef
20.
Zurück zum Zitat Fischer-Cripps AC (2004) Nanoindentation, 2nd edn. Springer, New YorkCrossRef Fischer-Cripps AC (2004) Nanoindentation, 2nd edn. Springer, New YorkCrossRef
24.
Zurück zum Zitat Goel S, Faisal NH, Luo X, Yan J, Agrawal A (2014) Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J Phys D 47:275304CrossRef Goel S, Faisal NH, Luo X, Yan J, Agrawal A (2014) Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J Phys D 47:275304CrossRef
25.
Zurück zum Zitat Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478CrossRef Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478CrossRef
26.
Zurück zum Zitat Goel S, Luo X, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164CrossRef Goel S, Luo X, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164CrossRef
27.
Zurück zum Zitat Gouldstone A, Chollacoop N, Dao M, Li J, Minor AM, Shen YL (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039CrossRef Gouldstone A, Chollacoop N, Dao M, Li J, Minor AM, Shen YL (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039CrossRef
28.
Zurück zum Zitat Hale LM, Zhang DB, Zhou X, Zimmerman JA, Moody NR, Dumitrica T, Ballarini R, Gerberich WW (2012) Dislocation morphology and nucleation within compressed si nanospheres: a molecular dynamics study. Comput Mater Sci 54:280–286. doi:10.1016/j.commatsci.2011.11.004 CrossRef Hale LM, Zhang DB, Zhou X, Zimmerman JA, Moody NR, Dumitrica T, Ballarini R, Gerberich WW (2012) Dislocation morphology and nucleation within compressed si nanospheres: a molecular dynamics study. Comput Mater Sci 54:280–286. doi:10.​1016/​j.​commatsci.​2011.​11.​004 CrossRef
29.
Zurück zum Zitat Hasnaoui A, Derlet PM, Van Swygenhoven H (2004) Interaction between dislocations and grain boundaries under an indenter—a md study. Acta Mater 52:2251–2258CrossRef Hasnaoui A, Derlet PM, Van Swygenhoven H (2004) Interaction between dislocations and grain boundaries under an indenter—a md study. Acta Mater 52:2251–2258CrossRef
32.
Zurück zum Zitat Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088CrossRef Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088CrossRef
33.
Zurück zum Zitat Kim DE, Oh SI (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17:2259–2265CrossRef Kim DE, Oh SI (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17:2259–2265CrossRef
34.
Zurück zum Zitat Kim DE, Oh SI (2008) Deformation pathway to high-pressure phases of silicon during nanoindentation. J Appl Phys 104:013502CrossRef Kim DE, Oh SI (2008) Deformation pathway to high-pressure phases of silicon during nanoindentation. J Appl Phys 104:013502CrossRef
35.
Zurück zum Zitat Lee Y, Park JY, Kim SY, Jun S, Im S (2005) Atomistic simulations of incipient plasticity under Al(111) nanoindentation. Mech Mater 37:1035–1046CrossRef Lee Y, Park JY, Kim SY, Jun S, Im S (2005) Atomistic simulations of incipient plasticity under Al(111) nanoindentation. Mech Mater 37:1035–1046CrossRef
39.
Zurück zum Zitat Li J, Van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310CrossRef Li J, Van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310CrossRef
40.
41.
Zurück zum Zitat Lu C, Gao Y, Michal G, Deng G, Huynh NN, Zhu H, Liu X, Tieu AK (2009) Experiment and molecular dynamics simulation of nanoindentation of body centered cubic iron. J Nanosci Nanotechnol 9:7307–7313. doi:10.1166/jnn.2009.1793 Lu C, Gao Y, Michal G, Deng G, Huynh NN, Zhu H, Liu X, Tieu AK (2009) Experiment and molecular dynamics simulation of nanoindentation of body centered cubic iron. J Nanosci Nanotechnol 9:7307–7313. doi:10.​1166/​jnn.​2009.​1793
42.
Zurück zum Zitat Mendelev MI, Kramer MJ, Becker CA, Asta M (2008) Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos Mag 88:1723–1750CrossRef Mendelev MI, Kramer MJ, Becker CA, Asta M (2008) Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos Mag 88:1723–1750CrossRef
44.
47.
Zurück zum Zitat Ruestes CJ, Bringa EM, Gao Y, Urbassek HM (2017) Molecular dynamics modeling of nanoindentation. In: Tiwari A, Natarajan S (eds) Applied nanoindentation in advanced materials. Wiley, Chichester, p 315 Ruestes CJ, Bringa EM, Gao Y, Urbassek HM (2017) Molecular dynamics modeling of nanoindentation. In: Tiwari A, Natarajan S (eds) Applied nanoindentation in advanced materials. Wiley, Chichester, p 315
48.
Zurück zum Zitat Saidi P, Frolov T, Hoyt JJ, Asta M (2014) An angular embedded atom method interatomic potential for the aluminum–silicon system. Model Simul Mater Sci Eng 22(5):055010CrossRef Saidi P, Frolov T, Hoyt JJ, Asta M (2014) An angular embedded atom method interatomic potential for the aluminum–silicon system. Model Simul Mater Sci Eng 22(5):055010CrossRef
52.
53.
Zurück zum Zitat Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of Si. Phys Rev B 31:5262–5271CrossRef Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of Si. Phys Rev B 31:5262–5271CrossRef
54.
Zurück zum Zitat Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015,012. http://www.ovito.org/ Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015,012. http://​www.​ovito.​org/​
55.
Zurück zum Zitat Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20:045021CrossRef Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20:045021CrossRef
56.
Zurück zum Zitat Stukowski A, Arsenlis A (2012) On the elastic-plastic decomposition of crystal deformation at the atomic scale. Model Simul Mater Sci Eng 20:035012CrossRef Stukowski A, Arsenlis A (2012) On the elastic-plastic decomposition of crystal deformation at the atomic scale. Model Simul Mater Sci Eng 20:035012CrossRef
57.
Zurück zum Zitat Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20:085007CrossRef Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20:085007CrossRef
58.
Zurück zum Zitat Su JF, Nie X, Stoilov V (2010) Characterization of fracture and debonding of Si particles in AlSi alloys. Mat Sci Eng A 527:7168–7175CrossRef Su JF, Nie X, Stoilov V (2010) Characterization of fracture and debonding of Si particles in AlSi alloys. Mat Sci Eng A 527:7168–7175CrossRef
59.
Zurück zum Zitat Surappa MK, Rohatgi RK (1981) Preparation and properties of cast aluminium-ceramic particle composites. J Mater Sci 16:983–993CrossRef Surappa MK, Rohatgi RK (1981) Preparation and properties of cast aluminium-ceramic particle composites. J Mater Sci 16:983–993CrossRef
60.
Zurück zum Zitat Szlufarska I (2006) Atomistic simulations of nanoindentation. Mater Today 9:42–50CrossRef Szlufarska I (2006) Atomistic simulations of nanoindentation. Mater Today 9:42–50CrossRef
61.
Zurück zum Zitat Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568CrossRef Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568CrossRef
63.
Zurück zum Zitat Tsuru T, Shibutani Y (2006) Atomistic simulations of elastic deformation and dislocation nucleation in Al under indentation-induced stress distribution. Model Simul Mater Sci Eng 14:S55CrossRef Tsuru T, Shibutani Y (2006) Atomistic simulations of elastic deformation and dislocation nucleation in Al under indentation-induced stress distribution. Model Simul Mater Sci Eng 14:S55CrossRef
64.
Zurück zum Zitat Tsuru T, Shibutani Y (2007) Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys Rev B 75:035415CrossRef Tsuru T, Shibutani Y (2007) Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys Rev B 75:035415CrossRef
70.
Zurück zum Zitat Yang B, Vehoff H (2007) Dependence of nanohardness upon indentation size and grain size—a local examination of the interaction between dislocations and grain boundaries. Acta Mater 55:849–856CrossRef Yang B, Vehoff H (2007) Dependence of nanohardness upon indentation size and grain size—a local examination of the interaction between dislocations and grain boundaries. Acta Mater 55:849–856CrossRef
72.
73.
Zurück zum Zitat Yuan Z, Li F, Zhang P, Chen B, Xue F, Hussain MZ (2014) Further investigation of particle reinforced aluminum matrix composites by indentation experiments. J Mater Res 29:586–595CrossRef Yuan Z, Li F, Zhang P, Chen B, Xue F, Hussain MZ (2014) Further investigation of particle reinforced aluminum matrix composites by indentation experiments. J Mater Res 29:586–595CrossRef
74.
78.
Zurück zum Zitat Ziegenhain G, Urbassek HM, Hartmaier A (2010) Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J Appl Phys 107:061807CrossRef Ziegenhain G, Urbassek HM, Hartmaier A (2010) Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J Appl Phys 107:061807CrossRef
Metadaten
Titel
Indentation into an Al/Si composite: enhanced dislocation mobility at interface
verfasst von
Zhibo Zhang
Herbert M. Urbassek
Publikationsdatum
29.08.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1495-6

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Science 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.