Skip to main content
Erschienen in:

23.02.2019

Indian Traffic Sign Detection and Recognition

verfasst von: Altaf Alam, Zainul Abdin Jaffery

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traffic Sign Recognition system is a very significant part of the Intelligent Transportation System, as traffic signs assist the drivers to drive more carefully and professionally. The main aim of this work is to present an efficient approach for detection and recognition of Indian traffic signs. Information regarding color and geometrical shape of traffic signs are utilized by the system for localizing the traffic sign in the acquired image. An RGB color saliency attention model of traffic sign makes use of an algorithm, which discriminates the sign candidate from other objects. Morphological shape filter is exploited for extracting the geometrical information of the traffic sign. Nearest neighbor matching-based recognition is performed between localized candidate features and stored Indian traffic sign database (ITSD) features. Speed up robust features (SURF) of a traffic sign is used in nearest neighbor matching to find out the resemblance between the traffic signs. System robustness is cross-examined for illumination, scale, rotation variations, similar color and shape variations, a standard data set is also considered to evaluate the system performance. The simulation results illustrate that the proposed system is working effectively under various hazardous condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.: An image processing system for driver assistance. Image Vis. Comput. 18(5), 367–376 (2000)CrossRef Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.: An image processing system for driver assistance. Image Vis. Comput. 18(5), 367–376 (2000)CrossRef
2.
Zurück zum Zitat Timofte, R., et al.: Combining traffic sign detection with 3D tracking towards better driver assistance. Emerg. Top. Comp. Vis. and its App. 1–22 (2011) Timofte, R., et al.: Combining traffic sign detection with 3D tracking towards better driver assistance. Emerg. Top. Comp. Vis. and its App. 1–22 (2011)
3.
Zurück zum Zitat Swathi, M., et al.: Automatic traffic sign detection and recognition: a review. International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), pp. 1–17 (2017) Swathi, M., et al.: Automatic traffic sign detection and recognition: a review. International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), pp. 1–17 (2017)
4.
Zurück zum Zitat Escalera, S., et al.: Background on traffic sign detection and recognition. Traffic-sign recognition systems, pp. 5–13. Springer (2011) Escalera, S., et al.: Background on traffic sign detection and recognition. Traffic-sign recognition systems, pp. 5–13. Springer (2011)
5.
Zurück zum Zitat Yakimov et al.: Traffic signs detection using tracking with prediction. International conference on E-business and telecommunications Colmar, Springer, 454–467 (2015) Yakimov et al.: Traffic signs detection using tracking with prediction. International conference on E-business and telecommunications Colmar, Springer, 454–467 (2015)
6.
Zurück zum Zitat Brkic et al.: An overview of traffic sign detection methods. Department of Electronics, microelectronics, Computer and Intelligent Systems Faculty of Electrical Engineering and Computing, 1–9 (2010) Brkic et al.: An overview of traffic sign detection methods. Department of Electronics, microelectronics, Computer and Intelligent Systems Faculty of Electrical Engineering and Computing, 1–9 (2010)
7.
Zurück zum Zitat Saadna, Y., Behloul, A.: An overview of traffic sign detection and classification methods. Int. J. Multimed. Inf. Retr. 6(3), 193–210 (2017)CrossRef Saadna, Y., Behloul, A.: An overview of traffic sign detection and classification methods. Int. J. Multimed. Inf. Retr. 6(3), 193–210 (2017)CrossRef
8.
Zurück zum Zitat H. Kamada et al.: A compact navigation system using image processing and fuzzy control,” In Proceeding IEEE South east con, 337–342(1990) H. Kamada et al.: A compact navigation system using image processing and fuzzy control,” In Proceeding IEEE South east con, 337–342(1990)
9.
Zurück zum Zitat R. Janssen et al.: Hybrid approach for traffic sign recognition. Proc. IEEE Int. Conference Intel. Vehicles, 390–397 (1993) R. Janssen et al.: Hybrid approach for traffic sign recognition. Proc. IEEE Int. Conference Intel. Vehicles, 390–397 (1993)
10.
Zurück zum Zitat C. Bahlmannetal.: A system for traffic sign detection, tracking, and recognition using color, shape, and motion information. IEEE Proceedings. Intel. Veh., 255–260 (2005) C. Bahlmannetal.: A system for traffic sign detection, tracking, and recognition using color, shape, and motion information. IEEE Proceedings. Intel. Veh., 255–260 (2005)
11.
Zurück zum Zitat S. Maldonado-Bascónet et al.: Road-sign detection and recognition based on support vector machines. IEEE Tran. On Intel. Transp. System, pp. 264–278, 2007 S. Maldonado-Bascónet et al.: Road-sign detection and recognition based on support vector machines. IEEE Tran. On Intel. Transp. System, pp. 264–278, 2007
12.
Zurück zum Zitat Malik, R., et al.: Road sign detection and recognition using color segmentation, shape analysis and template matching. Proc. Mach. Learn. Cybern. 3556–3560 (2007) Malik, R., et al.: Road sign detection and recognition using color segmentation, shape analysis and template matching. Proc. Mach. Learn. Cybern. 3556–3560 (2007)
13.
Zurück zum Zitat H. Huang et al.: Automatic detection and recognition of road sign. Int. Con. Mech. Embed. Syst. Appl., 626–630 (2008) H. Huang et al.: Automatic detection and recognition of road sign. Int. Con. Mech. Embed. Syst. Appl., 626–630 (2008)
14.
Zurück zum Zitat C. G. Kiran et al.: Traffic sign detection and pattern recognition using support vector machine. Int. Con. Adv. Pat. Recogn. 87–90 (2009) C. G. Kiran et al.: Traffic sign detection and pattern recognition using support vector machine. Int. Con. Adv. Pat. Recogn. 87–90 (2009)
15.
Zurück zum Zitat S. Vitabile et al.: Road signs recognition using a dynamic pixel aggregation technique in the HSV color space. Proc. Image Anal. Process 572–577 (2001) S. Vitabile et al.: Road signs recognition using a dynamic pixel aggregation technique in the HSV color space. Proc. Image Anal. Process 572–577 (2001)
16.
Zurück zum Zitat P. Wanitchai et al.: Traffic warning signs detection and recognition based on fuzzy logic and chain code analysis. Int. Symp. Intel. Inf. Tech. Appl. 508–512 (2008) P. Wanitchai et al.: Traffic warning signs detection and recognition based on fuzzy logic and chain code analysis. Int. Symp. Intel. Inf. Tech. Appl. 508–512 (2008)
17.
Zurück zum Zitat W.Shadeed, et al.: Road traffic sign detection in color images. Int. Con. Elect. Cir. Syst. 890–893 (2003) W.Shadeed, et al.: Road traffic sign detection in color images. Int. Con. Elect. Cir. Syst. 890–893 (2003)
18.
Zurück zum Zitat Wen et al.: Image retrieval based on saliency attention. Found. Intell. Syst. 177–188 (2014) Wen et al.: Image retrieval based on saliency attention. Found. Intell. Syst. 177–188 (2014)
19.
Zurück zum Zitat P. Paclik et al.: Road sign classification without color information. Proc. Con. Adv. School Imaging Comput. 1–7 (2000) P. Paclik et al.: Road sign classification without color information. Proc. Con. Adv. School Imaging Comput. 1–7 (2000)
20.
Zurück zum Zitat G. Loy et al.: Fast shape-based road sign detection for a driver assistance system. Int. Con. Intell. Robot Syst. 70–75 (2004) G. Loy et al.: Fast shape-based road sign detection for a driver assistance system. Int. Con. Intell. Robot Syst. 70–75 (2004)
21.
Zurück zum Zitat Hechri et al.: A robust road lanes and traffic signs recognition for driver assistance system. Int. J. Comp. Sci. Eng. 202–209 (2015)CrossRef Hechri et al.: A robust road lanes and traffic signs recognition for driver assistance system. Int. J. Comp. Sci. Eng. 202–209 (2015)CrossRef
22.
Zurück zum Zitat Garcia-Garrido MA et al.: Fast traffic sign detection and recognition under changing lighting conditions. IEEE Intel. Trans. Syst 811–816 (2006) Garcia-Garrido MA et al.: Fast traffic sign detection and recognition under changing lighting conditions. IEEE Intel. Trans. Syst 811–816 (2006)
23.
Zurück zum Zitat Borji, et al.: Online learning of task-driven object-based visual attention control. Image Vis. Comput. 28(7), 1130–1145 (2010)CrossRef Borji, et al.: Online learning of task-driven object-based visual attention control. Image Vis. Comput. 28(7), 1130–1145 (2010)CrossRef
24.
Zurück zum Zitat Ruta, et al.: A.: real-time traffic sign recognition from video by class-specific discriminative features. Pattern Recogn. 43(1), 416–−430 (2010)CrossRef Ruta, et al.: A.: real-time traffic sign recognition from video by class-specific discriminative features. Pattern Recogn. 43(1), 416–−430 (2010)CrossRef
25.
Zurück zum Zitat Creusen et al.: Color exploitation in hog-based traffic sign detection. IEEE Int. Con. Image Process 2669–2672 (2010) Creusen et al.: Color exploitation in hog-based traffic sign detection. IEEE Int. Con. Image Process 2669–2672 (2010)
26.
Zurück zum Zitat Overett et al.: Large scale sign detection using HOG feature variants. IEEE Intel. Veh. Symp. 326–331 (2011) Overett et al.: Large scale sign detection using HOG feature variants. IEEE Intel. Veh. Symp. 326–331 (2011)
29.
Zurück zum Zitat Devpriya et al.: Indian traffic sign recognition using HSV color model and kernel extreme learning machine. Int. J. Print Packag. Allied Sci. 3381–3391(2016) Devpriya et al.: Indian traffic sign recognition using HSV color model and kernel extreme learning machine. Int. J. Print Packag. Allied Sci. 3381–3391(2016)
30.
Zurück zum Zitat Huda noor A et al.: Real time detection and recognition of Indian traffic sign using Matlab. Int. J. Sci. Eng. Res. 684–690 (2013) Huda noor A et al.: Real time detection and recognition of Indian traffic sign using Matlab. Int. J. Sci. Eng. Res. 684–690 (2013)
31.
Zurück zum Zitat Arun nandewal et al.: Indian traffic sign detection and classification using neural network. Int. Congr. Technol. Manag. Soc. Sci. 11–17 (2016) Arun nandewal et al.: Indian traffic sign detection and classification using neural network. Int. Congr. Technol. Manag. Soc. Sci. 11–17 (2016)
34.
Zurück zum Zitat Itti, et al.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRef Itti, et al.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRef
35.
Zurück zum Zitat Lasota M et al.: Recognition of multiple traffic signs using key points feature detectors. Int. Conf. Expo. Electr. Power Eng. 535–540 (2016) Lasota M et al.: Recognition of multiple traffic signs using key points feature detectors. Int. Conf. Expo. Electr. Power Eng. 535–540 (2016)
36.
Zurück zum Zitat Yakimov, P.Y., et al.: Pre-processing digital images for quickly and reliably detecting road signs. Pattern Recognit. Image Anal. 25(4), 729–732 (2015)CrossRef Yakimov, P.Y., et al.: Pre-processing digital images for quickly and reliably detecting road signs. Pattern Recognit. Image Anal. 25(4), 729–732 (2015)CrossRef
37.
Zurück zum Zitat Herbet bay, et al.: SURF: speed up robust feature, pp. 404–417. Springer-Verlag Berlin, Heidelberg (2006) Herbet bay, et al.: SURF: speed up robust feature, pp. 404–417. Springer-Verlag Berlin, Heidelberg (2006)
38.
Zurück zum Zitat Gomez-Moreno, H., Maldonado-Bascon, S., Gil-Jimenez, P., Lafuente-Arroyo, S.: Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Trans. Intel. Trans. Syst. 11(4), 917–930 (2010)CrossRef Gomez-Moreno, H., Maldonado-Bascon, S., Gil-Jimenez, P., Lafuente-Arroyo, S.: Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Trans. Intel. Trans. Syst. 11(4), 917–930 (2010)CrossRef
39.
Zurück zum Zitat R Gonzalez: Digital image processing using MATLAB. Third edition, paperback, 2017 R Gonzalez: Digital image processing using MATLAB. Third edition, paperback, 2017
40.
Zurück zum Zitat Youssef A et al.: Fast Traffic Sign Recognition Using Color Segmentation and Deep Convolution Networks. International Conference on Advanced Concepts for Intelligent Vision Systems, Springer, 205–216 (2016) Youssef A et al.: Fast Traffic Sign Recognition Using Color Segmentation and Deep Convolution Networks. International Conference on Advanced Concepts for Intelligent Vision Systems, Springer, 205–216 (2016)
Metadaten
Titel
Indian Traffic Sign Detection and Recognition
verfasst von
Altaf Alam
Zainul Abdin Jaffery
Publikationsdatum
23.02.2019
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2020
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-019-00178-1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.