As the increasing of structure in wind turbine (WT), the flapping vibration force of blade is more and more serious, and the output power will be unstable in operation of the merged power networks. In this paper, to improve the WT dynamic performance in running processes, by analyzing the WT aerodynamics, wind shear, and tower shadow effect, we have designed based on radial basis function neural network (RBFNN) control strategy for individual pitch control (IPC), using RBFNN approach pitch control system unknown nonlinear functions, and introduced into the adaptive law online adjustment the system error, to improve the dynamic performance of pitch control system and alleviate structure of fatigue loads. Finally, the results show that based on RBFNN for IPC produces adaptability dynamic performance. It can effectively improve power quality to reduce fatigue load in key components of WT.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Bossanyi E, Savini B, Iribas M et al (2012) Advanced controller research for multi-MW wind turbines in the UPWIND project. Wind Energy 15:119–145
CrossRef
2.
Steffen R, David S, Frank S (2014) Nonlinear model predictive control of floating wind turbines with individual pitch control. In: American control conference, vol 6, pp 4434–4439
3.
Hassan HM, Eishafei AL, Farag WA, Saad MS (2012) A robust LMI-based pitch controller for large wind turbines. Renew Energy 44:63–71
CrossRef
4.
Zhang Y, Chen Z, Cheng M (2013) Proportional resonant individual pitch control for mitigation of wind turbines loads. IET Renew Power Gener 7(3):191–200
CrossRef
5.
Yao XJ, Li H (2012) Individual pitch regulation for wind turbine. Adv Mater Res 383–390:4341–4345
6.
Dou ZL, Shi G, Ling ZB (2014) Research on individual pitch control for reducing wind turbine torque fluctuation. Trans China Electrotech Soc 29(1):236–245
7.
Philip C, Ma X (2014) Nonlinear system identification for model-based condition monitoring of wind turbines. Renew Energy 71:654–660
8.
Boukhezzar B, Lupu L, Siguerdidjane H et al (2007) Multivariable control strategy for variable speed variable pitch wind turbines. Renew Energy 32(8):1273–1287
CrossRef
9.
Garelli F, Camocardi P, Mantz RJ (2010) Variable structure strategy to avoid amplitude and rate saturation in pitch control of a wind turbine. Int J Hydrogen Energy 35:5869–5875
CrossRef
10.
Hand MM, Balas MJ (2007) Blade load mitigation control design for a wind turbine operating in the path of vortices. Wind Energy 10:339–355
CrossRef
11.
Namik H, Stol K (2014) Individual blade pitch control of a spar-buoy floating wind turbine. IEEE Trans Cont Syst Tech 22(1):214–223
CrossRef
12.
Houtzager I, van Wingerden JW, Verhaegen M (2012) Wind turbine load reduction by rejecting the periodic load disturbances. Wind Energy 16:235–256
CrossRef
13.
Selvam K, Kanev S, Wingerden JW et al (2009) Feedback–feedforward individual pitch control for wind turbine load reduction. Int J Robust Nonlinear Control 19:72–91
MathSciNetCrossRefMATH
14.
Larsen T, Hanson D (2007) A method to avoid negative damped low frequent tower vibrations for a floating pitch controlled wind turbine. J Phys Conf Ser 75(1):2073–2079
15.
Xing Z, Chen L, Sun H et al (2011) Strategy study of individual pitch control. Proc CSEE 31(26):131–138
16.
Xia CL, Xiu J (2007) RBF ANN nonlinear prediction model based adaptive PID control of switched reluctance motor. Proc CSEE 27(3):57–62
17.
Qin B, Zhou H, Du K et al (2007) Sliding mode control of pitch angle based on RBF neural-network. Trans China Electrotech Soc 27(3):37–41
Über dieses Kapitel
Titel
Individual Pitch Control Based on Radial Basis Function Neural Network
Bing Han Lawu Zhou Zhiwen Zhang Meng Tian Ningfeng Deng
Verlag
Springer Berlin Heidelberg
Sequenznummer
1
BranchenIndex Online
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Bedingt durch die Altersstruktur vieler Kabelverteilnetze mit der damit verbundenen verminderten Isolationsfestigkeit oder durch fortschreitenden Kabelausbau ist es immer häufiger erforderlich, anstelle der Resonanz-Sternpunktserdung alternative Konzepte für die Sternpunktsbehandlung umzusetzen. Die damit verbundenen Fehlerortungskonzepte bzw. die Erhöhung der Restströme im Erdschlussfall führen jedoch aufgrund der hohen Fehlerströme zu neuen Anforderungen an die Erdungs- und Fehlerstromrückleitungs-Systeme. Lesen Sie hier über die Auswirkung von leitfähigen Strukturen auf die Stromaufteilung sowie die Potentialverhältnisse in urbanen Kabelnetzen bei stromstarken Erdschlüssen. Jetzt gratis downloaden!