Skip to main content
Erschienen in: Mobile Networks and Applications 2/2020

14.06.2019

Indoor Localization Using Smartphone Magnetic and Light Sensors: a Deep LSTM Approach

verfasst von: Xuyu Wang, Zhitao Yu, Shiwen Mao

Erschienen in: Mobile Networks and Applications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the increasing demand for location-based services, indoor localization has attracted great interest. In this paper, we present DeepML, a deep long short-term memory (LSTM) based system for indoor localization using magnetic and light sensors on smartphones. We experimentally verify the feasibility of using bimodal data from magnetic and light sensors for indoor localization for closed environments where there is no ambient light. We then design the DeepML system, which first builds bimodal images by data preprocessing, and then trains a deep LSTM network in the offline phase. Newly received magnetic field and light data are then exploited for estimating the location of the mobile device using a probabilistic method. The extensive experiments verify the effectiveness of the proposed DeepML system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Khelifi F, Bradai A, Benslimane A, Rawat P, Atri M (2018) A survey of localization systems in internet of things. Springer Mobile Networks and Applications Journal, pp 1–25 Khelifi F, Bradai A, Benslimane A, Rawat P, Atri M (2018) A survey of localization systems in internet of things. Springer Mobile Networks and Applications Journal, pp 1–25
2.
Zurück zum Zitat Kumarasiri R, Alshamaileh K, Tran NH, Devabhaktuni V (2016) An improved hybrid RSS/TDOA wireless sensors localization technique utilizing Wi-Fi networks. Springer Mobile Networks and Applications 21(2):286–295CrossRef Kumarasiri R, Alshamaileh K, Tran NH, Devabhaktuni V (2016) An improved hybrid RSS/TDOA wireless sensors localization technique utilizing Wi-Fi networks. Springer Mobile Networks and Applications 21(2):286–295CrossRef
3.
Zurück zum Zitat Kan C, Ding G, Wu Q, Zhang T (2018) Robust localization with crowd sensors: a data cleansing approach. Springer Mobile Networks and Applications 23(1):108–118CrossRef Kan C, Ding G, Wu Q, Zhang T (2018) Robust localization with crowd sensors: a data cleansing approach. Springer Mobile Networks and Applications 23(1):108–118CrossRef
4.
Zurück zum Zitat Gu Y, Lo A, Niemegeers I (2009) A survey of indoor positioning systems for wireless personal networks. IEEE Commun Surveys Tuts 11(1):13–32CrossRef Gu Y, Lo A, Niemegeers I (2009) A survey of indoor positioning systems for wireless personal networks. IEEE Commun Surveys Tuts 11(1):13–32CrossRef
5.
Zurück zum Zitat Wang X, Mao S, Pandey S, Agrawal P (2014) CA2T: Cooperative antenna arrays technique for pinpoint indoor localization. In: Proc MobiSPC 2014, Niagara Falls, Canada, pp 392–399 Wang X, Mao S, Pandey S, Agrawal P (2014) CA2T: Cooperative antenna arrays technique for pinpoint indoor localization. In: Proc MobiSPC 2014, Niagara Falls, Canada, pp 392–399
6.
Zurück zum Zitat Bahl P, Padmanabhan VN (2000) Radar: an in-building RF-based user location and tracking system. In: Proc IEEE INFOCOM’00, Tel Aviv, Israel, pp 775–784 Bahl P, Padmanabhan VN (2000) Radar: an in-building RF-based user location and tracking system. In: Proc IEEE INFOCOM’00, Tel Aviv, Israel, pp 775–784
7.
Zurück zum Zitat Youssef M, Agrawala A (2005) The Horus WLAN location determination system. In: Proc ACM MobiSys’05, Seattle, WA, pp 205–218 Youssef M, Agrawala A (2005) The Horus WLAN location determination system. In: Proc ACM MobiSys’05, Seattle, WA, pp 205–218
8.
Zurück zum Zitat Caso G, De Nardis L (2017) Virtual and oriented WiFi fingerprinting indoor positioning based on multi-wall multi-floor propagation models. Springer Mobile Networks and Applications 22(5):825–833CrossRef Caso G, De Nardis L (2017) Virtual and oriented WiFi fingerprinting indoor positioning based on multi-wall multi-floor propagation models. Springer Mobile Networks and Applications 22(5):825–833CrossRef
9.
Zurück zum Zitat Liu H-H (2017) The quick radio fingerprint collection method for a WiFi-based indoor positioning system. Springer Mobile Networks and Applications 22(1):61–71CrossRef Liu H-H (2017) The quick radio fingerprint collection method for a WiFi-based indoor positioning system. Springer Mobile Networks and Applications 22(1):61–71CrossRef
10.
Zurück zum Zitat Xiao J, Wu K, Yi Y, Ni L (2012) FIFS: Fine-grained indoor fingerprinting system. In: Proc IEEE ICCCN’12, Munich, Germany, pp 1–7 Xiao J, Wu K, Yi Y, Ni L (2012) FIFS: Fine-grained indoor fingerprinting system. In: Proc IEEE ICCCN’12, Munich, Germany, pp 1–7
11.
Zurück zum Zitat Wang X, Gao L, Mao S, Pandey S (2017) CSI-Based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66(1):763–776 Wang X, Gao L, Mao S, Pandey S (2017) CSI-Based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66(1):763–776
12.
Zurück zum Zitat Chung J, Donahoe M, Schmandt C, Kim I-J, Razavai P, Wiseman M (2011) Indoor location sensing using geo-magnetism. In: Proc ACM MobiSys’11, Bethesda, MD, pp 141–154 Chung J, Donahoe M, Schmandt C, Kim I-J, Razavai P, Wiseman M (2011) Indoor location sensing using geo-magnetism. In: Proc ACM MobiSys’11, Bethesda, MD, pp 141–154
13.
Zurück zum Zitat Storms W, Shockley J, Raquet J (2010) Magnetic field navigation in an indoor environment. In: Proc IEEE UPINLBS’10, Kirkkonummi, Finland, pp 1–10 Storms W, Shockley J, Raquet J (2010) Magnetic field navigation in an indoor environment. In: Proc IEEE UPINLBS’10, Kirkkonummi, Finland, pp 1–10
14.
Zurück zum Zitat Gozick B, Subbu KP, Dantu R, Maeshiro T (2011) Magnetic maps for indoor navigation. IEEE Trans Instrum Meas 60(12):3883–3891CrossRef Gozick B, Subbu KP, Dantu R, Maeshiro T (2011) Magnetic maps for indoor navigation. IEEE Trans Instrum Meas 60(12):3883–3891CrossRef
15.
Zurück zum Zitat Shu Y, Bo C, Shen G, Zhao C, Li L, Zhao F (2015) Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J Sel Areas Commun 33(7):1443–1457CrossRef Shu Y, Bo C, Shen G, Zhao C, Li L, Zhao F (2015) Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J Sel Areas Commun 33(7):1443–1457CrossRef
16.
Zurück zum Zitat Ma Y, Dou Z, Jiang Q, Hou Z (2016) Basmag: an optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information. IEEE Sensors J 16(20):7472–7482CrossRef Ma Y, Dou Z, Jiang Q, Hou Z (2016) Basmag: an optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information. IEEE Sensors J 16(20):7472–7482CrossRef
17.
Zurück zum Zitat Yang Z, Wang Z, Zhang J, Huang C, Zhang Q (2015) Wearables can afford: Light-weight indoor positioning with visible light. In: Proc ACM Mobisys’15, Florence, Italy, pp 317– 330 Yang Z, Wang Z, Zhang J, Huang C, Zhang Q (2015) Wearables can afford: Light-weight indoor positioning with visible light. In: Proc ACM Mobisys’15, Florence, Italy, pp 317– 330
18.
Zurück zum Zitat Kuo Y-S, Pannuto P, Hsiao K-J, Dutta P (2014) Luxapose: Indoor positioning with mobile phones and visible light. In: Proc ACM MobiCom’14, Maui, HI, pp 447–458 Kuo Y-S, Pannuto P, Hsiao K-J, Dutta P (2014) Luxapose: Indoor positioning with mobile phones and visible light. In: Proc ACM MobiCom’14, Maui, HI, pp 447–458
19.
Zurück zum Zitat Li L, Hu P, Peng C, Shen G, Zhao F (2014) Epsilon: a visible light based positioning system. In: Proc USENIX NSDI’14, Seattle, WA, pp 331–343 Li L, Hu P, Peng C, Shen G, Zhao F (2014) Epsilon: a visible light based positioning system. In: Proc USENIX NSDI’14, Seattle, WA, pp 331–343
20.
Zurück zum Zitat Zhang C, Zhang X (2016) LiTell: Robust indoor localization using unmodified light fixtures. In: Proc ACM MobiCom’16, New York, NY, pp 230–242 Zhang C, Zhang X (2016) LiTell: Robust indoor localization using unmodified light fixtures. In: Proc ACM MobiCom’16, New York, NY, pp 230–242
21.
Zurück zum Zitat Xu Q, Zheng R, Hranilovic S (2015) IDyLL: Indoor localization using inertial and light sensors on smartphones. In: Proc ACM UbiComp’15, Osaka, Japan, pp 307–318 Xu Q, Zheng R, Hranilovic S (2015) IDyLL: Indoor localization using inertial and light sensors on smartphones. In: Proc ACM UbiComp’15, Osaka, Japan, pp 307–318
22.
Zurück zum Zitat Zhao Z, Wang J, Zhao X, Peng C, Guo Q, Wu B (2017) NaviLight: Indoor localization and navigation under arbitrary lights. In: Proc IEEE INFOCOM’17, Atlanta, GA, pp 1–9 Zhao Z, Wang J, Zhao X, Peng C, Guo Q, Wu B (2017) NaviLight: Indoor localization and navigation under arbitrary lights. In: Proc IEEE INFOCOM’17, Atlanta, GA, pp 1–9
23.
Zurück zum Zitat Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with lstm. J Neural Comput 12(10):2451–2471CrossRef Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with lstm. J Neural Comput 12(10):2451–2471CrossRef
24.
Zurück zum Zitat Greff K, Srivastava RK, Koutníik J, Steunebrink BR, Schmidhuber J (2017) Lstm: a search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10):2222–2232MathSciNetCrossRef Greff K, Srivastava RK, Koutníik J, Steunebrink BR, Schmidhuber J (2017) Lstm: a search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10):2222–2232MathSciNetCrossRef
25.
Zurück zum Zitat Graves A, Jaitly N, Mohamed A-r (2013) Hybrid speech recognition with deep bidirectional LSTM. In: Proc IEEE ASRU’13, Olomouc, Czech Republic, pp 273–278 Graves A, Jaitly N, Mohamed A-r (2013) Hybrid speech recognition with deep bidirectional LSTM. In: Proc IEEE ASRU’13, Olomouc, Czech Republic, pp 273–278
26.
Zurück zum Zitat Ordonez FJ, Roggen D (2016) Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. MDPI Sensors 16(1):115CrossRef Ordonez FJ, Roggen D (2016) Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. MDPI Sensors 16(1):115CrossRef
27.
Zurück zum Zitat Do T-H, Yoo M (2016) An in-depth survey of visible light communication based positioning systems. MPDI Sensors 16(5):678CrossRef Do T-H, Yoo M (2016) An in-depth survey of visible light communication based positioning systems. MPDI Sensors 16(5):678CrossRef
28.
29.
Zurück zum Zitat He S, Chan S-HG (2016) Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun Surveys Tuts 18(1):466–490. First QuarterCrossRef He S, Chan S-HG (2016) Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun Surveys Tuts 18(1):466–490. First QuarterCrossRef
30.
Zurück zum Zitat Win MZ, Shen Y, Dai W (2018) A theoretical foundation of network localization and navigation. Proc IEEE 106(7):1136–1165CrossRef Win MZ, Shen Y, Dai W (2018) A theoretical foundation of network localization and navigation. Proc IEEE 106(7):1136–1165CrossRef
31.
Zurück zum Zitat Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2018) Application of machine learning in wireless networks: Key techniques and open issues. arXiv:1809.08707 Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2018) Application of machine learning in wireless networks: Key techniques and open issues. arXiv:1809.​08707
32.
Zurück zum Zitat Rapinski J, Cellmer S (2016) Analysis of range based indoor positioning techniques for personal communication networks. Springer Mobile Networks and Applications 21(3):539–549CrossRef Rapinski J, Cellmer S (2016) Analysis of range based indoor positioning techniques for personal communication networks. Springer Mobile Networks and Applications 21(3):539–549CrossRef
33.
Zurück zum Zitat Wang X, Wang X, Mao S (2018) RF Sensing in the Internet of Things: a general deep learning framework. IEEE Commun Mag 56(9):62–67CrossRef Wang X, Wang X, Mao S (2018) RF Sensing in the Internet of Things: a general deep learning framework. IEEE Commun Mag 56(9):62–67CrossRef
34.
Zurück zum Zitat Wang X, Gao L, Mao S, Pandey S (2015) Deepfi: Deep learning for indoor fingerprinting using channel state information. In: Proc WCNC’15, New Orleans, LA, pp 1666–1671 Wang X, Gao L, Mao S, Pandey S (2015) Deepfi: Deep learning for indoor fingerprinting using channel state information. In: Proc WCNC’15, New Orleans, LA, pp 1666–1671
35.
Zurück zum Zitat Wang X, Gao L, Mao S (2015) Phasefi: Phase fingerprinting for indoor localization with a deep learning approach. In: Proc GLOBECOM’15, San Diego, CA, pp 1–6 Wang X, Gao L, Mao S (2015) Phasefi: Phase fingerprinting for indoor localization with a deep learning approach. In: Proc GLOBECOM’15, San Diego, CA, pp 1–6
36.
Zurück zum Zitat Wang X, Gao L, Mao S (2016) CSI Phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things J 3(6):1113–1123CrossRef Wang X, Gao L, Mao S (2016) CSI Phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things J 3(6):1113–1123CrossRef
37.
Zurück zum Zitat Wang X, Gao L, Mao S (2017) BiLoc: Bi-modality deep learning for indoor localization with 5 GHz commodity Wi-Fi. IEEE Access J 5(1):4209–4220CrossRef Wang X, Gao L, Mao S (2017) BiLoc: Bi-modality deep learning for indoor localization with 5 GHz commodity Wi-Fi. IEEE Access J 5(1):4209–4220CrossRef
38.
Zurück zum Zitat Xiao C, Yang D, Chen Z, Tan G (2017) 3-D BLE indoor localization based on denoising autoencoder. IEEE Access J 5:12751–12760CrossRef Xiao C, Yang D, Chen Z, Tan G (2017) 3-D BLE indoor localization based on denoising autoencoder. IEEE Access J 5:12751–12760CrossRef
39.
Zurück zum Zitat Gu F, Khoshelham K, Yu C, Shang J (2018) Accurate step length estimation for pedestrian dead reckoning localization using stacked autoencoders. IEEE Trans Instrum Meas, p 1 Gu F, Khoshelham K, Yu C, Shang J (2018) Accurate step length estimation for pedestrian dead reckoning localization using stacked autoencoders. IEEE Trans Instrum Meas, p 1
40.
Zurück zum Zitat Khatab ZE, Hajihoseini A, Ghorashi SA (2018) A fingerprint method for indoor localization using autoencoder based deep extreme learning machine. IEEE Sens Lett 2(1):1–4CrossRef Khatab ZE, Hajihoseini A, Ghorashi SA (2018) A fingerprint method for indoor localization using autoencoder based deep extreme learning machine. IEEE Sens Lett 2(1):1–4CrossRef
41.
Zurück zum Zitat Abbas M, Elhamshary M, Rizk H, Torki M, Youssef M (2019) WiDeep: WiFi-based accurate and robust indoor localization system using deep learning. In: IEEE PerCom’19, Kyoto, Japan Abbas M, Elhamshary M, Rizk H, Torki M, Youssef M (2019) WiDeep: WiFi-based accurate and robust indoor localization system using deep learning. In: IEEE PerCom’19, Kyoto, Japan
42.
Zurück zum Zitat Wang X, Wang X, Mao S (2017) CiFi: Deep convolutional neural networks for indoor localization with 5GHz Wi-Fi. In: Proc IEEE ICC 2017, Paris, France, pp 1–6 Wang X, Wang X, Mao S (2017) CiFi: Deep convolutional neural networks for indoor localization with 5GHz Wi-Fi. In: Proc IEEE ICC 2017, Paris, France, pp 1–6
44.
Zurück zum Zitat Wang X, Wang X, Mao S (2017) ResLoc: Deep residual sharing learning for indoor localization with CSI tensors. In: Proc IEEE PIMRC 2017, Montreal, Canada, pp 1–6 Wang X, Wang X, Mao S (2017) ResLoc: Deep residual sharing learning for indoor localization with CSI tensors. In: Proc IEEE PIMRC 2017, Montreal, Canada, pp 1–6
45.
Zurück zum Zitat Wang X, Yu Z, Mao S (2018) DeepML: Deep LSTM for indoor localization with smartphone magnetic and light sensors. In: Proc IEEE ICC 2017, Kansas City, MO, pp 1–6 Wang X, Yu Z, Mao S (2018) DeepML: Deep LSTM for indoor localization with smartphone magnetic and light sensors. In: Proc IEEE ICC 2017, Kansas City, MO, pp 1–6
46.
Zurück zum Zitat Sahar A, Han D (2018) An LSTM-based indoor positioning method using Wi-Fi signals. In: Proc ACM international conference on vision, image and signal processing, Las Vegas, NV, p Article No 43 Sahar A, Han D (2018) An LSTM-based indoor positioning method using Wi-Fi signals. In: Proc ACM international conference on vision, image and signal processing, Las Vegas, NV, p Article No 43
48.
Zurück zum Zitat Hu Y, Xiong Y, Huang W, Li X-Y, Yang P, Zhang Y, Mao X (2018) Lightitude: Indoor positioning using uneven light intensity distribution. Proc ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2(2):Artical 67CrossRef Hu Y, Xiong Y, Huang W, Li X-Y, Yang P, Zhang Y, Mao X (2018) Lightitude: Indoor positioning using uneven light intensity distribution. Proc ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2(2):Artical 67CrossRef
Metadaten
Titel
Indoor Localization Using Smartphone Magnetic and Light Sensors: a Deep LSTM Approach
verfasst von
Xuyu Wang
Zhitao Yu
Shiwen Mao
Publikationsdatum
14.06.2019
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 2/2020
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-019-01302-x

Weitere Artikel der Ausgabe 2/2020

Mobile Networks and Applications 2/2020 Zur Ausgabe

Neuer Inhalt