Skip to main content

2014 | OriginalPaper | Buchkapitel

Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid

verfasst von : Günter Pappenberger, Hans-Peter Hohmann

Erschienen in: Biotechnology of Food and Feed Additives

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

l-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced l-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein–Grüssner process, designed in 1933, was the main industrial route. Here, d-sorbitol is converted to l-ascorbic acid via 2-keto-l-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert d-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate l-ascorbic acid directly via oxidation of l-sorbosone, an intermediate of the bio-oxidation of d-sorbitol to 2KGA. This opens the possibility for a direct route from d-sorbitol to l-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of d-isoascorbic acid, the C5 epimer of l-ascorbic acid. d-isoascorbic acid has the same conformation at C5 as d-glucose and can be derived more directly than l-ascorbic acid from this common carbohydrate feed stock.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Funk C (1912) The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J State Med (London) 20:341–368 Funk C (1912) The etiology of the deficiency diseases. Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J State Med (London) 20:341–368
2.
Zurück zum Zitat Zhou J, Du G, Chen J (2012) Metabolic Engineering of microorganisms for vitamin C production. In: Wang X, Chen J, Quinn P (eds) Reprogramming microbial metabolic pathways. Springer, Netherlands, pp 241–259 Zhou J, Du G, Chen J (2012) Metabolic Engineering of microorganisms for vitamin C production. In: Wang X, Chen J, Quinn P (eds) Reprogramming microbial metabolic pathways. Springer, Netherlands, pp 241–259
4.
Zurück zum Zitat Hancock R (2009) Recent patents on vitamin C: opportunities for crop improvement and single-step biological manufacture. Recent Pat Food Nutr Agric 1:39–49CrossRef Hancock R (2009) Recent patents on vitamin C: opportunities for crop improvement and single-step biological manufacture. Recent Pat Food Nutr Agric 1:39–49CrossRef
5.
Zurück zum Zitat Bhatt A (2010) Evolution of clinical research: a history before and beyond James Lind. Perspect Clin Res 1:6–10 Bhatt A (2010) Evolution of clinical research: a history before and beyond James Lind. Perspect Clin Res 1:6–10
6.
Zurück zum Zitat Zetterström R (2006) C. Eijkman (1858–1930) and Sir F.G. Hopkins (1861–1947): the dawn of vitamins and other essential nutritional growth factors. Acta Paediatr 95:1331–1333. doi:10.1080/08035250600960036 CrossRef Zetterström R (2006) C. Eijkman (1858–1930) and Sir F.G. Hopkins (1861–1947): the dawn of vitamins and other essential nutritional growth factors. Acta Paediatr 95:1331–1333. doi:10.​1080/​0803525060096003​6 CrossRef
7.
Zurück zum Zitat Piro A, Tagarelli G, Lagonia P, Tagarelli A, Quattrone A (2010) Casimir Funk: his discovery of the vitamins and their deficiency disorders. Ann Nutr Metab 57:85–88CrossRef Piro A, Tagarelli G, Lagonia P, Tagarelli A, Quattrone A (2010) Casimir Funk: his discovery of the vitamins and their deficiency disorders. Ann Nutr Metab 57:85–88CrossRef
8.
Zurück zum Zitat Svirbely J, Szent-Györgyi A (1932) The chemical nature of vitamin C. Biochem J 26:865–870 Svirbely J, Szent-Györgyi A (1932) The chemical nature of vitamin C. Biochem J 26:865–870
9.
Zurück zum Zitat King C, Waugh W (1932) The chemical nature of vitamin C. Science 75:357–358CrossRef King C, Waugh W (1932) The chemical nature of vitamin C. Science 75:357–358CrossRef
10.
Zurück zum Zitat Jukes TH (1988) The identification of vitamin C, a historical summary. J Nutr 118:1290–1293 Jukes TH (1988) The identification of vitamin C, a historical summary. J Nutr 118:1290–1293
11.
Zurück zum Zitat Herbert RW, Hirst EL, Percival EGV, Reynolds RJW, Smith F (1933) The constitution of ascorbic acid. J Chem Soc 299:1270–1290 Herbert RW, Hirst EL, Percival EGV, Reynolds RJW, Smith F (1933) The constitution of ascorbic acid. J Chem Soc 299:1270–1290
12.
Zurück zum Zitat Ault RG, Baird DK, Carrington HC, Haworth WN, Herbert R, Hirst EL, Percival EGV, Smith F, Stacey M (1933) Synthesis of d- and of l-ascorbic acid and of analogous substances. J Chem Soc (Resumed) 332:1419–1423 Ault RG, Baird DK, Carrington HC, Haworth WN, Herbert R, Hirst EL, Percival EGV, Smith F, Stacey M (1933) Synthesis of d- and of l-ascorbic acid and of analogous substances. J Chem Soc (Resumed) 332:1419–1423
16.
Zurück zum Zitat Horowitz HH, Doerschuk AP, King CG (1952) The origin of l-ascorbic acid in the albino rat. J Biol Chem 199:193–198 Horowitz HH, Doerschuk AP, King CG (1952) The origin of l-ascorbic acid in the albino rat. J Biol Chem 199:193–198
17.
Zurück zum Zitat Kondo Y, Inai Y, Sato Y, Handa S, Kubo S, Shimokado K, Goto S, Nishikimi M, Maruyama N, Ishigami A (2006) Senescence marker protein 30 functions as gluconolactonase in l-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci 103:5723–5728. doi:10.1073/pnas.0511225103 CrossRef Kondo Y, Inai Y, Sato Y, Handa S, Kubo S, Shimokado K, Goto S, Nishikimi M, Maruyama N, Ishigami A (2006) Senescence marker protein 30 functions as gluconolactonase in l-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci 103:5723–5728. doi:10.​1073/​pnas.​0511225103 CrossRef
20.
Zurück zum Zitat Isherwood FA, Chen YT, Mapson LW (1953) Synthesis of l-ascorbic acid in plants and animals. Nature 171:348–349CrossRef Isherwood FA, Chen YT, Mapson LW (1953) Synthesis of l-ascorbic acid in plants and animals. Nature 171:348–349CrossRef
21.
Zurück zum Zitat Smirnoff N, Wheeler G (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314CrossRef Smirnoff N, Wheeler G (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314CrossRef
22.
Zurück zum Zitat Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1040–1042 Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1040–1042
23.
Zurück zum Zitat Baroja-Mazo A, Valle Pd, Rúa J, de Cima S, Busto F, de Arriaga D, Smirnoff N (2005) Characterisation and biosynthesis of d-erythroascorbic acid in Phycomyces blakesleeanus. Fungal Genetics Biol 42:390–402. doi:10.1016/j.fgb.2005.01.005 Baroja-Mazo A, Valle Pd, Rúa J, de Cima S, Busto F, de Arriaga D, Smirnoff N (2005) Characterisation and biosynthesis of d-erythroascorbic acid in Phycomyces blakesleeanus. Fungal Genetics Biol 42:390–402. doi:10.​1016/​j.​fgb.​2005.​01.​005
24.
Zurück zum Zitat Bertrand G (1896) Preparation biochimique du sorbose. C R Acad Sci 122:900–903 Bertrand G (1896) Preparation biochimique du sorbose. C R Acad Sci 122:900–903
25.
Zurück zum Zitat Bertrand G (1898) Recherches sur la production biochimique du sorbose. Ann Inst Pasteur (Paris) 12:385–399 Bertrand G (1898) Recherches sur la production biochimique du sorbose. Ann Inst Pasteur (Paris) 12:385–399
26.
Zurück zum Zitat Bertrand G (1904) Etude biochimique de la bacterie du sorbose. Ann Chim Phys 3:181–288 Bertrand G (1904) Etude biochimique de la bacterie du sorbose. Ann Chim Phys 3:181–288
27.
Zurück zum Zitat Gillis M, Kersters K, Gossele F, Swings J, De Ley J, MacKenzie A, Bousfield I (1983) Rediscovery of Bertrand’s sorbose bacterium (Acetobacter aceti subsp. xylinum): proposal to designate NCIB 11664 in place of NCIB 4112 (ATCC 23767) as the type strain of Acetobacter aceti subsp. xylinum. Int J Syst Evol Microbiol 33:122–124 Gillis M, Kersters K, Gossele F, Swings J, De Ley J, MacKenzie A, Bousfield I (1983) Rediscovery of Bertrand’s sorbose bacterium (Acetobacter aceti subsp. xylinum): proposal to designate NCIB 11664 in place of NCIB 4112 (ATCC 23767) as the type strain of Acetobacter aceti subsp. xylinum. Int J Syst Evol Microbiol 33:122–124
28.
Zurück zum Zitat Crawford T, Crawford S (1980) Synthesis of l-ascorbic acid. Adv Carbohydr Chem Biochem 37:79–155CrossRef Crawford T, Crawford S (1980) Synthesis of l-ascorbic acid. Adv Carbohydr Chem Biochem 37:79–155CrossRef
29.
Zurück zum Zitat Dalmer O, Heyns K (1936) Process for the production of keto gulonic acid from sorbose. US 2190377 Dalmer O, Heyns K (1936) Process for the production of keto gulonic acid from sorbose. US 2190377
30.
Zurück zum Zitat Tadamitsu K (1983) Process for the preparation of 2-keto-l-gulonic acid. US 4599446 Tadamitsu K (1983) Process for the preparation of 2-keto-l-gulonic acid. US 4599446
31.
Zurück zum Zitat Bronnimann C, Bodnar Z, Hug P, Mallat T, Baiker A (1994) Direct oxidation of l-sorbose to 2-keto-l-gulonic acid with molecular oxygen on platinum- and palladium-based catalysts. J Catal 150:199–211. doi:10.1006/jcat.1994.1336 Bronnimann C, Bodnar Z, Hug P, Mallat T, Baiker A (1994) Direct oxidation of l-sorbose to 2-keto-l-gulonic acid with molecular oxygen on platinum- and palladium-based catalysts. J Catal 150:199–211. doi:10.​1006/​jcat.​1994.​1336
32.
Zurück zum Zitat Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80 Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80
34.
Zurück zum Zitat Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64CrossRef Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64CrossRef
35.
Zurück zum Zitat Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966. doi:10.1128/aem.69.4.1959- 1966.2003CrossRef Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966. doi:10.​1128/​aem.​69.​4.​1959- 1966.2003CrossRef
36.
Zurück zum Zitat Salusjärvi T, Povelainen M, Hvorslev N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Neustroev KN, Kalkkinen N, Miasnikov AN (2004) Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65:306–314. doi:10.1007/s00253-004-1594-6 CrossRef Salusjärvi T, Povelainen M, Hvorslev N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Neustroev KN, Kalkkinen N, Miasnikov AN (2004) Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 65:306–314. doi:10.​1007/​s00253-004-1594-6 CrossRef
37.
Zurück zum Zitat Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270CrossRef Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270CrossRef
38.
Zurück zum Zitat Shinjoh M, Tomiyama N, Miyazaki T, Hoshino T (2002) Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound d-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 66:2314–2322CrossRef Shinjoh M, Tomiyama N, Miyazaki T, Hoshino T (2002) Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound d-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 66:2314–2322CrossRef
39.
Zurück zum Zitat Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T (2003) Membrane-bound d-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics 1647:278–288. doi:10.1016/S1570-9639(03)00071-2 Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T (2003) Membrane-bound d-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics 1647:278–288. doi:10.​1016/​S1570-9639(03)00071-2
40.
Zurück zum Zitat Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterization of d-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric Biol Chem 46:135–141CrossRef Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterization of d-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric Biol Chem 46:135–141CrossRef
42.
Zurück zum Zitat Isono M, Nakanishi I, Sasajima K, Motizuki K, Kanzaki T, Okazaki H, Yoshino H (1968) 2-keto-l-gulonic acid fermentation. Part I. Paper chromatographic characterization of metabolic products from sorbitol and l-sorbose by various bacteria. Agric Biol Chem 35:424–431CrossRef Isono M, Nakanishi I, Sasajima K, Motizuki K, Kanzaki T, Okazaki H, Yoshino H (1968) 2-keto-l-gulonic acid fermentation. Part I. Paper chromatographic characterization of metabolic products from sorbitol and l-sorbose by various bacteria. Agric Biol Chem 35:424–431CrossRef
43.
Zurück zum Zitat Okazaki H, Kanzaki T, Doi M, Nara K, Motizuki K (1968) 2-keto-l-gulonic acid fermentation. Part II. Identification of metabolic products from sorbitol. Agric Biol Chem 32:1250–1255 Okazaki H, Kanzaki T, Doi M, Nara K, Motizuki K (1968) 2-keto-l-gulonic acid fermentation. Part II. Identification of metabolic products from sorbitol. Agric Biol Chem 32:1250–1255
44.
Zurück zum Zitat Okazaki H, Kanzaki T, Sasajima K, Terada Y (1969) 2-keto-l-gulonic acid fermentation. Part III. Evaluation of the pathway of sorbitol metabolism in Gluconobacter melanogenus. Agric Biol Chem 33:207–211CrossRef Okazaki H, Kanzaki T, Sasajima K, Terada Y (1969) 2-keto-l-gulonic acid fermentation. Part III. Evaluation of the pathway of sorbitol metabolism in Gluconobacter melanogenus. Agric Biol Chem 33:207–211CrossRef
45.
Zurück zum Zitat Kanzaki T, Okazaki H (1970) 2-keto-L-gulonic acid fermentation. Part IV. L-sorbose metabolism in Pseudomonas aeruginosa. Agric Biol Chem 34:432–436CrossRef Kanzaki T, Okazaki H (1970) 2-keto-L-gulonic acid fermentation. Part IV. L-sorbose metabolism in Pseudomonas aeruginosa. Agric Biol Chem 34:432–436CrossRef
46.
Zurück zum Zitat Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. Biotechnol Bioeng 14:799–810. doi:10.1002/bit.260140509 CrossRef Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. Biotechnol Bioeng 14:799–810. doi:10.​1002/​bit.​260140509 CrossRef
47.
Zurück zum Zitat Tsukada Y, Perlman D (1972) The fermentation of l-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of l-sorbose to 2-keto-l-gulonic acid. Biotechnol Bioeng 14:811–818. doi:10.1002/bit.260140510 CrossRef Tsukada Y, Perlman D (1972) The fermentation of l-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of l-sorbose to 2-keto-l-gulonic acid. Biotechnol Bioeng 14:811–818. doi:10.​1002/​bit.​260140510 CrossRef
48.
Zurück zum Zitat Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. III. Investigation of the metabolic pathway from sorbose to 2-keto-L-gulonic acid. Biotechnol Bioeng 14:1035–1038. doi:10.1002/bit.260140612 CrossRef Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. III. Investigation of the metabolic pathway from sorbose to 2-keto-L-gulonic acid. Biotechnol Bioeng 14:1035–1038. doi:10.​1002/​bit.​260140612 CrossRef
49.
Zurück zum Zitat Makover S, Ramsey G, Vane F, Witt C, Wright R (1975) New mechanisms for the biosynthesis and metabolism of 2-keto-l-gulonic acid in bacteria. Biotechnol Bioeng 17:1485–1514CrossRef Makover S, Ramsey G, Vane F, Witt C, Wright R (1975) New mechanisms for the biosynthesis and metabolism of 2-keto-l-gulonic acid in bacteria. Biotechnol Bioeng 17:1485–1514CrossRef
52.
Zurück zum Zitat Hoshino T, Sugisawa T, Tazoe M, Shinjoh M, Fujiwara A (1990) Metabolic pathway for 2-keto-l-gulonic acid formation in Gluconobacter melanogenus IFO 3293. Agric Biol Chem 54:1211–1218CrossRef Hoshino T, Sugisawa T, Tazoe M, Shinjoh M, Fujiwara A (1990) Metabolic pathway for 2-keto-l-gulonic acid formation in Gluconobacter melanogenus IFO 3293. Agric Biol Chem 54:1211–1218CrossRef
53.
Zurück zum Zitat Sugisawa T, Hoshino T, Nomura S, Fujiwara A (1991) Isolation and characterization of membrane-bound l-sorbose dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55:363–370CrossRef Sugisawa T, Hoshino T, Nomura S, Fujiwara A (1991) Isolation and characterization of membrane-bound l-sorbose dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55:363–370CrossRef
54.
Zurück zum Zitat Sugisawa T, Hoshino T, Masuda S, Nomura S, Setoguchi Y, Tazoe M, Shinjoh M, Someha S, Fujiwara A (1990) Microbial production of 2-keto-l-gulonic acid from l-sorbose and d-sorbitol by Gluconobacter melanogenus. Agric Biol Chem 54:1201–1209CrossRef Sugisawa T, Hoshino T, Masuda S, Nomura S, Setoguchi Y, Tazoe M, Shinjoh M, Someha S, Fujiwara A (1990) Microbial production of 2-keto-l-gulonic acid from l-sorbose and d-sorbitol by Gluconobacter melanogenus. Agric Biol Chem 54:1201–1209CrossRef
55.
Zurück zum Zitat Hoshino T, Sugisawa T, Fujiwara A (1991) Isolation and characterization of NAD(P)-dependent l-sorbosone dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55:665–670CrossRef Hoshino T, Sugisawa T, Fujiwara A (1991) Isolation and characterization of NAD(P)-dependent l-sorbosone dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55:665–670CrossRef
56.
Zurück zum Zitat Manning R, Kahn M (1987) Biosynthesis of 2 keto-l-gulonic acid. US 5082785 Manning R, Kahn M (1987) Biosynthesis of 2 keto-l-gulonic acid. US 5082785
57.
Zurück zum Zitat Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460 Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460
58.
Zurück zum Zitat Huang H (1960) Preparation of 2-keto-l-gulonic acid. US 3043749 Huang H (1960) Preparation of 2-keto-l-gulonic acid. US 3043749
59.
Zurück zum Zitat Tengerdy R (1961) Redox potential changes in the 2-keto-l-gulonic acid fermentation—I. Correlation between redox potential and dissolved-oxygen concentration. J Biochem Microbiol Technol Eng 3:241–253CrossRef Tengerdy R (1961) Redox potential changes in the 2-keto-l-gulonic acid fermentation—I. Correlation between redox potential and dissolved-oxygen concentration. J Biochem Microbiol Technol Eng 3:241–253CrossRef
60.
Zurück zum Zitat Motizuki K, Kanzaki T, Okazaki H, Yoshino H, Nara K, Isono M, Nakanishi I, Sasajima K (1962) Method for producing 2-keto-l-gulonic acid. US 3234105 Motizuki K, Kanzaki T, Okazaki H, Yoshino H, Nara K, Isono M, Nakanishi I, Sasajima K (1962) Method for producing 2-keto-l-gulonic acid. US 3234105
61.
Zurück zum Zitat Krajewski V, Simić P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376. doi:10.1128/aem.03022-09 CrossRef Krajewski V, Simić P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376. doi:10.​1128/​aem.​03022-09 CrossRef
62.
Zurück zum Zitat Yin G, Tao Z, Yu L, Wang D, Dan J, Yan Z, Ning W, Wang C, Wang S, Jiang H, Zhang D, Feng X, Zhao Q, Wei W (1980) Studies on the production of vitamin C precursor 2-keto-l-gulonic acid from l-sorbose by fermentation. I. isolation screening and identification of 2-keto-l-gulonic acid producing bacteria. Acta Microbiologica Sinica 20:246–251 Yin G, Tao Z, Yu L, Wang D, Dan J, Yan Z, Ning W, Wang C, Wang S, Jiang H, Zhang D, Feng X, Zhao Q, Wei W (1980) Studies on the production of vitamin C precursor 2-keto-l-gulonic acid from l-sorbose by fermentation. I. isolation screening and identification of 2-keto-l-gulonic acid producing bacteria. Acta Microbiologica Sinica 20:246–251
63.
Zurück zum Zitat Yan Z, Tao Z, Yu L, Yin G, Ning W, Wang C, Wang S, Jiang H, Yu J, Wang M, Yu X (1981) Studies on production of vitamin C precursor 2-keto-l-gulonic acid from l-sorbose by fermentation. II. Conditions for submerged fermentation of 2-keto-l-gulonic acid. Acta Mycrobiologica Sinica 21:185–191 Yan Z, Tao Z, Yu L, Yin G, Ning W, Wang C, Wang S, Jiang H, Yu J, Wang M, Yu X (1981) Studies on production of vitamin C precursor 2-keto-l-gulonic acid from l-sorbose by fermentation. II. Conditions for submerged fermentation of 2-keto-l-gulonic acid. Acta Mycrobiologica Sinica 21:185–191
64.
Zurück zum Zitat Ning W, Tao Z, Wang C, Wang S, Yan Z, Yin G (1987) Fermentation process for producing 2-keto-l-gulonic acid. EP 0278447B1 Ning W, Tao Z, Wang C, Wang S, Yan Z, Yin G (1987) Fermentation process for producing 2-keto-l-gulonic acid. EP 0278447B1
65.
Zurück zum Zitat Urbance J, Bratina B, Stoddard S, Schmidt T (2001) Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070CrossRef Urbance J, Bratina B, Stoddard S, Schmidt T (2001) Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize l-sorbose to 2-keto-l-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070CrossRef
66.
Zurück zum Zitat Anonymus (2001) Notification list. Int J Syst Evol Microbiol 51:1231–1233 Anonymus (2001) Notification list. Int J Syst Evol Microbiol 51:1231–1233
67.
Zurück zum Zitat Xiong X, Han S, Wang J, Jiang Z, Chen W, Jia N, Wei H, Cheng H, Yang Y, Zhu B, You S, He J, Hou W, Chen M, Yu C, Jiao Y, Zhang W (2011) Complete genome sequence of the bacterium Ketogulonicigenium vulgare Y25. J Bacteriol 193:315–316CrossRef Xiong X, Han S, Wang J, Jiang Z, Chen W, Jia N, Wei H, Cheng H, Yang Y, Zhu B, You S, He J, Hou W, Chen M, Yu C, Jiao Y, Zhang W (2011) Complete genome sequence of the bacterium Ketogulonicigenium vulgare Y25. J Bacteriol 193:315–316CrossRef
68.
Zurück zum Zitat Liu L, Li Y, Zhang J, Zhou Z, Liu J, Li X, Zhou J, Du G, Wang L, Chen J (2011) Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-001. J Bacteriol 193:6108–6109CrossRef Liu L, Li Y, Zhang J, Zhou Z, Liu J, Li X, Zhou J, Du G, Wang L, Chen J (2011) Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-001. J Bacteriol 193:6108–6109CrossRef
69.
Zurück zum Zitat Stoddard S, Liaw H, Eddington J, Yang Y (1996) Bacterial strains and use thereof in fermentation processes for 2-keto-l-gulonic acid protection. EP0939831 B1 Stoddard S, Liaw H, Eddington J, Yang Y (1996) Bacterial strains and use thereof in fermentation processes for 2-keto-l-gulonic acid protection. EP0939831 B1
70.
Zurück zum Zitat Asakura A, Hoshino T (1999) Isolation and characterization of a new quinoprotein dehydrogenase, l-sorbose/l-sorbosone dehydrogenase. Biosci Biotechnol Biochem 63:46–53CrossRef Asakura A, Hoshino T (1999) Isolation and characterization of a new quinoprotein dehydrogenase, l-sorbose/l-sorbosone dehydrogenase. Biosci Biotechnol Biochem 63:46–53CrossRef
71.
Zurück zum Zitat Asakura A, Hoshino T, Ojima S, Shinjo M, Tomiyama N (1996) Alcohol/aldehyde dehydrogenase. US 6730503 B1 Asakura A, Hoshino T, Ojima S, Shinjo M, Tomiyama N (1996) Alcohol/aldehyde dehydrogenase. US 6730503 B1
72.
Zurück zum Zitat Hao A, Jia Q, Wu H, Zhou H, Geng W, Gao W, Zhao J, He J (2008) Isolation and characteristics research of l-sorbose dehydrogenase in Ketogulonigenium sp. WB0104. Ind Microbiol 38:10–14 Hao A, Jia Q, Wu H, Zhou H, Geng W, Gao W, Zhao J, He J (2008) Isolation and characteristics research of l-sorbose dehydrogenase in Ketogulonigenium sp. WB0104. Ind Microbiol 38:10–14
73.
Zurück zum Zitat Hao A, Jia Q, Wu H, Zhou H, Geng W, Gao W, Zhao J, He J (2006) l-sorbinose dehydrogenase and its coding gene and uses. CN 101085987 B Hao A, Jia Q, Wu H, Zhou H, Geng W, Gao W, Zhao J, He J (2006) l-sorbinose dehydrogenase and its coding gene and uses. CN 101085987 B
74.
Zurück zum Zitat Zhan W, Jiao Y, Yuan H, Xie L (2003) A new l-sorbose dehydrogenase gene and the protein it encoded. CN 1521181 Zhan W, Jiao Y, Yuan H, Xie L (2003) A new l-sorbose dehydrogenase gene and the protein it encoded. CN 1521181
75.
Zurück zum Zitat Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan Y (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE 6:e26108. doi:10.1371/journal.pone.0026108 Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan Y (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE 6:e26108. doi:10.​1371/​journal.​pone.​0026108
76.
Zurück zum Zitat Takagi Y, Sugisawa T, Hoshino T (2009) Continuous 2-keto-l-gulonic acid fermentation from l-sorbose by Ketogulonigenium vulgare DSM 4025. Appl Microbiol Biotechnol 82:1049–1056. doi:10.1007/s00253-008-1822-6 CrossRef Takagi Y, Sugisawa T, Hoshino T (2009) Continuous 2-keto-l-gulonic acid fermentation from l-sorbose by Ketogulonigenium vulgare DSM 4025. Appl Microbiol Biotechnol 82:1049–1056. doi:10.​1007/​s00253-008-1822-6 CrossRef
77.
Zurück zum Zitat Takagi Y, Sugisawa T, Hoshino T (2010) Continuous 2-keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Appl Microbiol Biotechnol 86:469–480. doi:10.1007/s00253-009-2312-1 CrossRef Takagi Y, Sugisawa T, Hoshino T (2010) Continuous 2-keto-l-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Appl Microbiol Biotechnol 86:469–480. doi:10.​1007/​s00253-009-2312-1 CrossRef
78.
Zurück zum Zitat Hoshino T, Ojima S, Sugisawa T (1991) Fermentation process for producing 2-keto-l-gulonic acid. EP0518136B1 Hoshino T, Ojima S, Sugisawa T (1991) Fermentation process for producing 2-keto-l-gulonic acid. EP0518136B1
79.
Zurück zum Zitat Gao Y, Yuan Y-J (2011) Comprehensive quality evaluation of corn steep liquor in 2-keto-l-gulonic acid fermentation. J Agric Food Chem 59:9845–9853. doi:10.1021/jf201792u CrossRef Gao Y, Yuan Y-J (2011) Comprehensive quality evaluation of corn steep liquor in 2-keto-l-gulonic acid fermentation. J Agric Food Chem 59:9845–9853. doi:10.​1021/​jf201792u CrossRef
80.
Zurück zum Zitat Zhang J, Zhou J, Liu J, Chen K, Liu L, Chen J (2011) Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Biores Technol 102:4807–4814. doi:10.1016/j.biortech.2010.10.124 Zhang J, Zhou J, Liu J, Chen K, Liu L, Chen J (2011) Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Biores Technol 102:4807–4814. doi:10.​1016/​j.​biortech.​2010.​10.​124
81.
Zurück zum Zitat Leduc S, Troostembergh JC, Lebeault JM (2004) Folate requirements of the 2-keto-l-gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356 in l-sorbose/CSL medium. Appl Microbiol Biotechnol 65:163–167. doi:10.1007/s00253-004-1562-1 CrossRef Leduc S, Troostembergh JC, Lebeault JM (2004) Folate requirements of the 2-keto-l-gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356 in l-sorbose/CSL medium. Appl Microbiol Biotechnol 65:163–167. doi:10.​1007/​s00253-004-1562-1 CrossRef
82.
83.
Zurück zum Zitat Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48. doi:10.1016/j.jbiotec.2012.05.015 Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48. doi:10.​1016/​j.​jbiotec.​2012.​05.​015
84.
Zurück zum Zitat Ma Q, Zhang W, Zhang L, Qiao B, Pan C, Yi H, Wang L, Yuan YJ (2012) Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection. PLoS ONE 7:e32156CrossRef Ma Q, Zhang W, Zhang L, Qiao B, Pan C, Yi H, Wang L, Yuan YJ (2012) Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection. PLoS ONE 7:e32156CrossRef
85.
86.
Zurück zum Zitat Lv S, Zhao S, Yang Y, Zhang Z, Chen H (2011) Research progress on Vc precursor of 2-KGA production through mixed fermentation from l-sorbose. Biotechnol Bull 5:50–54 Lv S, Zhao S, Yang Y, Zhang Z, Chen H (2011) Research progress on Vc precursor of 2-KGA production through mixed fermentation from l-sorbose. Biotechnol Bull 5:50–54
87.
Zurück zum Zitat Yi H, Zhang H, Zhu W, Zeng Y (2003) Progresses of vitamin C productive technology. China Food Addit 6:76–81 Yi H, Zhang H, Zhu W, Zeng Y (2003) Progresses of vitamin C productive technology. China Food Addit 6:76–81
88.
Zurück zum Zitat Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z (2004) Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam. J Appl Microbiol 96:1317–1323CrossRef Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z (2004) Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam. J Appl Microbiol 96:1317–1323CrossRef
89.
Zurück zum Zitat Song Q, He J, Ren S, Ye Q, Guo X, Cheng C, Yin G (1997) Production of vitamin C precursor-2-l-keto-gulonic acid from l-sorbose by a novel bacterial component system of SCB329 SCB933. III.The characteristics and control of 2-keto-l-gulonic fermentation. Ind Microbiol 27:6–10 Song Q, He J, Ren S, Ye Q, Guo X, Cheng C, Yin G (1997) Production of vitamin C precursor-2-l-keto-gulonic acid from l-sorbose by a novel bacterial component system of SCB329 SCB933. III.The characteristics and control of 2-keto-l-gulonic fermentation. Ind Microbiol 27:6–10
90.
Zurück zum Zitat Hoshino T, Kiyasu T, Shinjoh M (2001) Enzymatic process for the manufacture of l-ascorbic acid and d-erythorbic acid. US 2005019878 Hoshino T, Kiyasu T, Shinjoh M (2001) Enzymatic process for the manufacture of l-ascorbic acid and d-erythorbic acid. US 2005019878
91.
Zurück zum Zitat Asakura A, Hoshino T, Kiyasu T, Shinjoh M (1999) Manufacture of l-ascorbic acid and d-erythorbic acid. EP1026257 B1 Asakura A, Hoshino T, Kiyasu T, Shinjoh M (1999) Manufacture of l-ascorbic acid and d-erythorbic acid. EP1026257 B1
92.
Zurück zum Zitat Sugisawa T, Ojima S, Matzinger P, Hoshino T (1995) Isolation and characterization of a new vitamin C producing enzyme (l-gulono-γ-lactone dehydrogenase) of bacterial origin. Biosci Biotechnol Biochem 59:190–196CrossRef Sugisawa T, Ojima S, Matzinger P, Hoshino T (1995) Isolation and characterization of a new vitamin C producing enzyme (l-gulono-γ-lactone dehydrogenase) of bacterial origin. Biosci Biotechnol Biochem 59:190–196CrossRef
93.
Zurück zum Zitat Sugisawa T, Miyazaki T, Hoshino T (2005) Microbial production of l-ascorbic acid from d-sorbitol, l-sorbose, l-gulose, and l-sorbosone by Ketogulonicigenium vulgare DSM 4025. Microbiol Ferment Technol Commun 69:659–662 Sugisawa T, Miyazaki T, Hoshino T (2005) Microbial production of l-ascorbic acid from d-sorbitol, l-sorbose, l-gulose, and l-sorbosone by Ketogulonicigenium vulgare DSM 4025. Microbiol Ferment Technol Commun 69:659–662
94.
Zurück zum Zitat Berry A, Lee C, Mayer A, Shinjoh M (2003) Microbial production of l-ascorbic acid. EP2348113 Berry A, Lee C, Mayer A, Shinjoh M (2003) Microbial production of l-ascorbic acid. EP2348113
95.
Zurück zum Zitat Loewus M, Bedgar D, Saito K, Loewus F (1990) Conversion of l-sorbosone to l-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. Plant Physiol 94:1492–1495CrossRef Loewus M, Bedgar D, Saito K, Loewus F (1990) Conversion of l-sorbosone to l-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. Plant Physiol 94:1492–1495CrossRef
96.
Zurück zum Zitat Miyazaki T, Sugisawa T, Hoshino T (2006) Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of l-sorbosone to l-ascorbic acid. Appl Environ Microbiol 72:1487–1495. doi:10.1128/aem.72.2.1487-1495.2006 CrossRef Miyazaki T, Sugisawa T, Hoshino T (2006) Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of l-sorbosone to l-ascorbic acid. Appl Environ Microbiol 72:1487–1495. doi:10.​1128/​aem.​72.​2.​1487-1495.​2006 CrossRef
97.
98.
Zurück zum Zitat Beardmore-Gray M, Anthony C (1986) The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. J Gen Microbiol 132:1257–1268. doi:10.1099/00221287-132-5-1257 Beardmore-Gray M, Anthony C (1986) The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. J Gen Microbiol 132:1257–1268. doi:10.​1099/​00221287-132-5-1257
99.
Zurück zum Zitat Cleton-Jansen A, Goosen N, Vink K, van de Putte P (1989) Cloning of the genes encoding the two different glucose dehydrogenases from Acinetobacter calcoaceticus. Antonie Van Leeuwenhoek 56:73–79CrossRef Cleton-Jansen A, Goosen N, Vink K, van de Putte P (1989) Cloning of the genes encoding the two different glucose dehydrogenases from Acinetobacter calcoaceticus. Antonie Van Leeuwenhoek 56:73–79CrossRef
102.
Zurück zum Zitat Dunning JW, Fulmer EI, Guymon JF, Underkofler LA (1938) The growth and chemical action of Acetobacter suboxydans upon l-inositol. Science (New York, N.Y.) 87:72CrossRef Dunning JW, Fulmer EI, Guymon JF, Underkofler LA (1938) The growth and chemical action of Acetobacter suboxydans upon l-inositol. Science (New York, N.Y.) 87:72CrossRef
103.
Zurück zum Zitat Kluyver A, Boezaardt A (1939) Note on the biochemical preparation of inosose. Rec Trav Chim Pays-Bas 58:956–958 Kluyver A, Boezaardt A (1939) Note on the biochemical preparation of inosose. Rec Trav Chim Pays-Bas 58:956–958
105.
Zurück zum Zitat Carter H, Belinskey C, Clark R, Flynn E, Lytle B, McCasland G, Robbins M (1948) Oxidation of inositol by Acetobacter suboxydans. J Biol Chem 174:415–426 Carter H, Belinskey C, Clark R, Flynn E, Lytle B, McCasland G, Robbins M (1948) Oxidation of inositol by Acetobacter suboxydans. J Biol Chem 174:415–426
106.
Zurück zum Zitat Chargaff E, Magasanik B (1946) Oxidation of stereoisomers of the inositol group by Acetobacter suboxydans. J Biol Chem 165:379–380 Chargaff E, Magasanik B (1946) Oxidation of stereoisomers of the inositol group by Acetobacter suboxydans. J Biol Chem 165:379–380
107.
Zurück zum Zitat Magasanik B, Chargaff E (1948) The stereochemistry of an enzymatic reaction; the oxidation of 1-, d-, and epi-inositol by Acetobacter suboxydans. J Biol Chem 174:173–188 Magasanik B, Chargaff E (1948) The stereochemistry of an enzymatic reaction; the oxidation of 1-, d-, and epi-inositol by Acetobacter suboxydans. J Biol Chem 174:173–188
108.
Zurück zum Zitat Magasanik B, Chargaff E (1948) The oxidation of d-quercitol by Acetobacter suboxydans. J Biol Chem 175:939–943 Magasanik B, Chargaff E (1948) The oxidation of d-quercitol by Acetobacter suboxydans. J Biol Chem 175:939–943
109.
Zurück zum Zitat Magasanik B, Franzl RE, Chargaff E (1952) The stereochemical specificity of the oxidation of cyclitols by Acetobacter suboxydans. J Am Chem Soc 74:2618–2621. doi:10.1021/ja01130a045 CrossRef Magasanik B, Franzl RE, Chargaff E (1952) The stereochemical specificity of the oxidation of cyclitols by Acetobacter suboxydans. J Am Chem Soc 74:2618–2621. doi:10.​1021/​ja01130a045 CrossRef
110.
Zurück zum Zitat Anderson L, Takeda R, Angyal S, McHugh D (1958) Cyclitol oxidation by Acetobacter suboxydans. II. Additional cyclitols and the “Third Specificity Rule”. Arch Biochem Biophys 78:518–531CrossRef Anderson L, Takeda R, Angyal S, McHugh D (1958) Cyclitol oxidation by Acetobacter suboxydans. II. Additional cyclitols and the “Third Specificity Rule”. Arch Biochem Biophys 78:518–531CrossRef
111.
Zurück zum Zitat Criddle W, Fry J, Keaney M (1974) Myo-inositol dehydrogenase(s) from Acetomonas oxydans. Optimization of conditions for solubilization of membrane-bound enzyme. Biochem J 137:449–452 Criddle W, Fry J, Keaney M (1974) Myo-inositol dehydrogenase(s) from Acetomonas oxydans. Optimization of conditions for solubilization of membrane-bound enzyme. Biochem J 137:449–452
112.
Zurück zum Zitat Criddle W, Fry J, Keaney M, Lucas C, Tovey J (1977) Myo-inositol dehydrogenase(s) from Acetomonas oxydans. Mol Cell Biochem 16:3–8CrossRef Criddle W, Fry J, Keaney M, Lucas C, Tovey J (1977) Myo-inositol dehydrogenase(s) from Acetomonas oxydans. Mol Cell Biochem 16:3–8CrossRef
113.
Zurück zum Zitat Wissler J, Freivogel K, Wiesner W (1995) Cyclitol. WO9704101 Wissler J, Freivogel K, Wiesner W (1995) Cyclitol. WO9704101
114.
Zurück zum Zitat Yagi J, Yamashita T, Kato A, Takaki Y, Sakai H (1967) Studies on erythorbic acid production by fermentation. Part I. Erythorbic acid-producing strain and cultural condition. Agric Biol Chem 31:340–345CrossRef Yagi J, Yamashita T, Kato A, Takaki Y, Sakai H (1967) Studies on erythorbic acid production by fermentation. Part I. Erythorbic acid-producing strain and cultural condition. Agric Biol Chem 31:340–345CrossRef
116.
Zurück zum Zitat Takahashi T, Mitsumoto M, Kayamori H (1960) Production of d-araboascorbic acid by penicillium. Nature 188:411–412CrossRef Takahashi T, Mitsumoto M, Kayamori H (1960) Production of d-araboascorbic acid by penicillium. Nature 188:411–412CrossRef
117.
Zurück zum Zitat Takahashi T, Yamashita H, Kato E, Mitsumoto M, Murakawa S (1976) Purification and some properties of d-glucono-γ-lactone dehydrogenase d-erythorbic acid producing enzyme of Penicillium cyaneo-fulvum. Agric Biol Chem 40:121–129 Takahashi T, Yamashita H, Kato E, Mitsumoto M, Murakawa S (1976) Purification and some properties of d-glucono-γ-lactone dehydrogenase d-erythorbic acid producing enzyme of Penicillium cyaneo-fulvum. Agric Biol Chem 40:121–129
118.
Zurück zum Zitat Salusjärvi T, Kalkkinen N, Miasnikov AN (2004) Cloning and characterization of gluconolactone oxidase of Penicillium cyaneo-fulvum ATCC 10431 and evaluation of its use for production of d-erythorbic acid in recombinant Pichia pastoris. Appl Environ Microbiol 70:5503–5510. doi:10.1128/aem.70.9.5503-5510.2004 CrossRef Salusjärvi T, Kalkkinen N, Miasnikov AN (2004) Cloning and characterization of gluconolactone oxidase of Penicillium cyaneo-fulvum ATCC 10431 and evaluation of its use for production of d-erythorbic acid in recombinant Pichia pastoris. Appl Environ Microbiol 70:5503–5510. doi:10.​1128/​aem.​70.​9.​5503-5510.​2004 CrossRef
119.
Zurück zum Zitat Murakawa S, Takahashi T (1977) Biosynthesis of a new ascorbic acid analogue by d-gluconolactone dehydrogenase of Penicillium cyaneo-fulvum. Agric Biol Chem 41:2103–2104CrossRef Murakawa S, Takahashi T (1977) Biosynthesis of a new ascorbic acid analogue by d-gluconolactone dehydrogenase of Penicillium cyaneo-fulvum. Agric Biol Chem 41:2103–2104CrossRef
120.
Zurück zum Zitat Takahashi T, Mitsumoto M (1963) Transformation and hydrolysis of d-gulono-gamma and delta-lactone. Nature 199:765–767CrossRef Takahashi T, Mitsumoto M (1963) Transformation and hydrolysis of d-gulono-gamma and delta-lactone. Nature 199:765–767CrossRef
121.
Zurück zum Zitat Neidelman S, Amon W, Geigert J (1980) Production of 2-keto-d-gluconic acid and hydrogen peroxide. US 4351902 Neidelman S, Amon W, Geigert J (1980) Production of 2-keto-d-gluconic acid and hydrogen peroxide. US 4351902
122.
Zurück zum Zitat Shao Y, Seib P, Kramer K, Van Galen D (1993) Synthesis and properties of d-erythroascorbic acid and its vitamin C activity in the tobacco hornworm (Manduca sexta). J Agric Food Chem 41:1391–1396CrossRef Shao Y, Seib P, Kramer K, Van Galen D (1993) Synthesis and properties of d-erythroascorbic acid and its vitamin C activity in the tobacco hornworm (Manduca sexta). J Agric Food Chem 41:1391–1396CrossRef
123.
Zurück zum Zitat Kim S-T, Huh W-K, Lee B-H, Kang S-O (1998) d-Arabinose dehydrogenase and its gene from Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology 1429:29–39. doi:10.1016/S0167-4838(98)00217-9 Kim S-T, Huh W-K, Lee B-H, Kang S-O (1998) d-Arabinose dehydrogenase and its gene from Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology 1429:29–39. doi:10.​1016/​S0167-4838(98)00217-9
124.
Zurück zum Zitat Amako K, Fujita K, Shimohata T, Hasegawa E, Kishimoto R, Goda K (2006) NAD+-specific d-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae. FEBS Lett 580:6428–6434 Amako K, Fujita K, Shimohata T, Hasegawa E, Kishimoto R, Goda K (2006) NAD+-specific d-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae. FEBS Lett 580:6428–6434
126.
Zurück zum Zitat Hancock R, Galpin J, Viola R (2000) Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol Lett 186:245–250 Hancock R, Galpin J, Viola R (2000) Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol Lett 186:245–250
127.
Zurück zum Zitat Shimizu K, Nishiyama K, Inoue T, Takano N, Mikata M, Masataka Y, Azuma T, Osawa S (1967) Studies on erythorbic acid production by fermentation. Part II. Erythorbic acid production by Jar Fermentor. Agric Biol Chem 31:346–352CrossRef Shimizu K, Nishiyama K, Inoue T, Takano N, Mikata M, Masataka Y, Azuma T, Osawa S (1967) Studies on erythorbic acid production by fermentation. Part II. Erythorbic acid production by Jar Fermentor. Agric Biol Chem 31:346–352CrossRef
128.
Zurück zum Zitat Sun W-J, Zhou Y-Z, Zhou Q, Cui F-J, Yu S-L, Sun L (2012) Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Biores Technol 110:546–551. doi:10.1016/j.biortech.2012.01.040 Sun W-J, Zhou Y-Z, Zhou Q, Cui F-J, Yu S-L, Sun L (2012) Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Biores Technol 110:546–551. doi:10.​1016/​j.​biortech.​2012.​01.​040
129.
Zurück zum Zitat Matsushita K, Ameyama M (1982) d-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154CrossRef Matsushita K, Ameyama M (1982) d-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154CrossRef
130.
Zurück zum Zitat Ramakrishnan T, Cambell J (1955) Gluconic dehydrogenase of Pseudomonas aeruginosa. Biochim Biophys Acta 17:122–127CrossRef Ramakrishnan T, Cambell J (1955) Gluconic dehydrogenase of Pseudomonas aeruginosa. Biochim Biophys Acta 17:122–127CrossRef
131.
Zurück zum Zitat Matsushita K, Shinagawa E, Ameyama M (1982) d-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods Enzymol 89:187–193CrossRef Matsushita K, Shinagawa E, Ameyama M (1982) d-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods Enzymol 89:187–193CrossRef
132.
Zurück zum Zitat Chundawat S, Beckham G, Himmel M, Dale B (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRef Chundawat S, Beckham G, Himmel M, Dale B (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRef
133.
Zurück zum Zitat Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408CrossRef Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408CrossRef
Metadaten
Titel
Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid
verfasst von
Günter Pappenberger
Hans-Peter Hohmann
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2013_243

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.