Skip to main content

2020 | OriginalPaper | Buchkapitel

16. Industriebeispiele und Anwendungsbereiche

verfasst von : Thomas Schwarz, Christoph Gürtler, Torsten Müller, Christophe Mihalcea, Freya Burton, Robert Conrado, Sean Simpson, Biniam T. Maru, Pradeep C. Munasinghe, Shawn W. Jones, Bryan P. Tracy, Ronnie Machielsen, Ross Gordon, Deepak Pant, Metin Bulut, Heleen De Wever, Frank Kensy, Stefan Verseck, Christian Janke

Erschienen in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Die industrielle Verwendung von C1-Gasen hat einerseits Tradition (z. B. Fischer-Tropsch-Katalyse), andererseits werden neue Ansätze erprobt und befinden sich z. T. an der Schwelle zur Kommerzialisierung. Kap. 16 stellt beispielhaft Entwicklungs-, Pilot-, Demonstrations- und Produktionsverfahren unterschiedlicher Unternehmen vor, darunter VITO aus Belgien, BASF, b.fab und Covestro aus Deutschland, AlgaTechnologies aus Israel, AlgaeParc und Photanol aus den Niederlanden sowie Cellana, Cyanotech, Lanzatech und White Dog Labs aus den USA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Van der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insight from an industrial case study. Green Chem 14:3272 Van der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insight from an industrial case study. Green Chem 14:3272
2.
Zurück zum Zitat Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Jlungdahl pathway of CO2 fixation. Biochim Biophys Acta, Proteins Proteomics 1784(12):1873–1898 Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Jlungdahl pathway of CO2 fixation. Biochim Biophys Acta, Proteins Proteomics 1784(12):1873–1898
3.
Zurück zum Zitat De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P (2017) Syngas biorefinery and syngas utilization. In: Wagemann K, Tippkötter N (Hrsg) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, S 1–34 De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P (2017) Syngas biorefinery and syngas utilization. In: Wagemann K, Tippkötter N (Hrsg) Advances in biochemical engineering/biotechnology. Springer, Heidelberg, S 1–34
4.
Zurück zum Zitat Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemical production. Curr Opin Biotechnol 33:60–72 Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemical production. Curr Opin Biotechnol 33:60–72
5.
Zurück zum Zitat Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO2 fixation for anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800 Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO2 fixation for anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800
6.
Zurück zum Zitat Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395 Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395
7.
Zurück zum Zitat Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210 Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210
8.
Zurück zum Zitat Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381 Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381
11.
Zurück zum Zitat Hellingwerf KJ, Teixeira de Mattos MJ (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. J Bacteriol 142:87–90 Hellingwerf KJ, Teixeira de Mattos MJ (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. J Bacteriol 142:87–90
12.
Zurück zum Zitat Angermayr SA, van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-7-99 Angermayr SA, van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels. https://​doi.​org/​10.​1186/​1754-6834-7-99
14.
17.
Zurück zum Zitat Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072 Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072
19.
Zurück zum Zitat ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Bioresour Technol 215:357–370 ElMekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Bioresour Technol 215:357–370
21.
Zurück zum Zitat Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543 Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543
22.
Zurück zum Zitat Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723 Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723
23.
Zurück zum Zitat Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716 Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716
24.
Zurück zum Zitat Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22:441–448 Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22:441–448
25.
Zurück zum Zitat Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DP, Pant D (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273 Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DP, Pant D (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273
26.
Zurück zum Zitat May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233 May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233
27.
Zurück zum Zitat Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Commun 5:3242 Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Commun 5:3242
28.
Zurück zum Zitat Jhong HR, Ma S, Kenis PJ (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199 Jhong HR, Ma S, Kenis PJ (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199
29.
Zurück zum Zitat Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170 Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170
30.
Zurück zum Zitat Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116 Kopljar D, Inan A, Vindayer P, Wagner N, Klemm E (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44:1107–1116
32.
Zurück zum Zitat DNV – Det Norske Veritas (2007) Positionspapier. Carbon dioxide utilisation: electrochemical conversion of CO2 – opportunities and challenges DNV – Det Norske Veritas (2007) Positionspapier. Carbon dioxide utilisation: electrochemical conversion of CO2 – opportunities and challenges
33.
Zurück zum Zitat Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343(6178):1520–1522 Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343(6178):1520–1522
34.
Zurück zum Zitat Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310 Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310
36.
Zurück zum Zitat Goetzberger A, Zastrow A (1981) Kartoffeln unter dem Kollektor. Sonnenenergie 3:19–22 Goetzberger A, Zastrow A (1981) Kartoffeln unter dem Kollektor. Sonnenenergie 3:19–22
37.
Zurück zum Zitat Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9 Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9
38.
Zurück zum Zitat Bar-Even A (2016) Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:3851–3863 Bar-Even A (2016) Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:3851–3863
39.
Zurück zum Zitat Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MWW (2013) Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotechnol 24:1–9 Hawkins AS, McTernan PM, Lian H, Kelly RM, Adams MWW (2013) Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Curr Opin Biotechnol 24:1–9
40.
Zurück zum Zitat Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306 Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306
41.
Zurück zum Zitat Leu S, Boussiba S (2014) Advances in the production of high-value product by microalgae. Ind Biotechnol 10(3):169–183 Leu S, Boussiba S (2014) Advances in the production of high-value product by microalgae. Ind Biotechnol 10(3):169–183
42.
Zurück zum Zitat Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96 Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96
43.
Zurück zum Zitat Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648 Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648
44.
Zurück zum Zitat Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and perfomances. Biotechnol Progress 22:1490–1506 Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and perfomances. Biotechnol Progress 22:1490–1506
45.
Zurück zum Zitat Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177 Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177
46.
Zurück zum Zitat Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293 Pulz O (2001) Photobioreactors: production systems of phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293
47.
Zurück zum Zitat Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:131–151 Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12:131–151
54.
Zurück zum Zitat Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–27 Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–27
56.
Zurück zum Zitat Gimpel JA, Henriquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376–1376 Gimpel JA, Henriquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376–1376
57.
Zurück zum Zitat Lü J, Sheahanb C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466 Lü J, Sheahanb C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466
61.
Zurück zum Zitat Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321 Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321
62.
Zurück zum Zitat Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutraceuticals Assoc 3(4):24–30 Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutraceuticals Assoc 3(4):24–30
68.
Zurück zum Zitat Milledge JJ (2012) Microalgae: commercial potential for fuel, food and feed. Food Sci Technol 26(1):28–31 Milledge JJ (2012) Microalgae: commercial potential for fuel, food and feed. Food Sci Technol 26(1):28–31
71.
Zurück zum Zitat Boussiba S, Aflalo C (2005) An insight into the future of microalgal biotechnology. Innov Food Technol 28:37–39 Boussiba S, Aflalo C (2005) An insight into the future of microalgal biotechnology. Innov Food Technol 28:37–39
75.
Zurück zum Zitat Keeling RF, Keeling CD (2017) Atmospheric monthly In Situ CO2 Data – Mauna Loa Observatory, Hawaii. In: Scripps CO2 Program Data, UC San Diego Library Digital Collections Keeling RF, Keeling CD (2017) Atmospheric monthly In Situ CO2 Data – Mauna Loa Observatory, Hawaii. In: Scripps CO2 Program Data, UC San Diego Library Digital Collections
76.
Zurück zum Zitat Ebi KL, Ziska LH (2018) Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med 15^:e1002600 Ebi KL, Ziska LH (2018) Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med 15^:e1002600
77.
Zurück zum Zitat Christianson DW (2018) Correction to structural and chemical biology of terpenoid cyclases. Chem Rev 118(24):11795 Christianson DW (2018) Correction to structural and chemical biology of terpenoid cyclases. Chem Rev 118(24):11795
78.
Zurück zum Zitat Sharkey TD, Monson RK (2017) Isoprene research – 60 years later, the biology is still enigmatic. Plant Cell Environ 40:1671–1678 Sharkey TD, Monson RK (2017) Isoprene research – 60 years later, the biology is still enigmatic. Plant Cell Environ 40:1671–1678
79.
Zurück zum Zitat Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143 Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143
80.
Zurück zum Zitat Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530 Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530
81.
Zurück zum Zitat Spanova M, Daum G (2011) Squalene – biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Tech 113:1299–1320 Spanova M, Daum G (2011) Squalene – biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Tech 113:1299–1320
82.
Zurück zum Zitat Koksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402:363–373 Koksal M, Zimmer I, Schnitzler JP, Christianson DW (2010) Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 402:363–373
84.
Zurück zum Zitat Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166:17–26 Kansal A (2009) Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J Hazard Mater 166:17–26
85.
Zurück zum Zitat Cailleux A, Cogny M, Allain P (1992) Blood Isoprene concentrations in humans and in some animal species. Biochem Med Metab B 47:157–160 Cailleux A, Cogny M, Allain P (1992) Blood Isoprene concentrations in humans and in some animal species. Biochem Med Metab B 47:157–160
86.
Zurück zum Zitat Fleisher A, Fleisher Z (2004) Study of Dictamnus gymnostylis volatiles and plausible explanation of the “burning Bush” phenomenon. J Essent Oil Res 16:1–3 Fleisher A, Fleisher Z (2004) Study of Dictamnus gymnostylis volatiles and plausible explanation of the “burning Bush” phenomenon. J Essent Oil Res 16:1–3
87.
Zurück zum Zitat Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front Microbiol 9:2460 Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front Microbiol 9:2460
88.
Zurück zum Zitat Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532
89.
Zurück zum Zitat Triemer S, Gilmore K, Vu GT, Seeberger PH, Seidel-Morgenstern A (2018) Literally green chemical synthesis of artemisinin from plant extracts. Angew Chem Int Ed Engl 57:5525–5528 Triemer S, Gilmore K, Vu GT, Seeberger PH, Seidel-Morgenstern A (2018) Literally green chemical synthesis of artemisinin from plant extracts. Angew Chem Int Ed Engl 57:5525–5528
92.
Zurück zum Zitat Putter KM, van Deenen N, Unland K, Prufer D, Schulze Gronover C (2017) Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol 17:88 Putter KM, van Deenen N, Unland K, Prufer D, Schulze Gronover C (2017) Isoprenoid biosynthesis in dandelion latex is enhanced by the overexpression of three key enzymes involved in the mevalonate pathway. BMC Plant Biol 17:88
93.
Zurück zum Zitat Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102:6451–6458 Chaves JE, Melis A (2018) Biotechnology of cyanobacterial isoprene production. Appl Microbiol Biotechnol 102:6451–6458
94.
Zurück zum Zitat Paul D, Bridges S, Burgess SC, Dandass Y, Lawrence ML (2008) Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T. J Bacteriol 190:5531–5532 Paul D, Bridges S, Burgess SC, Dandass Y, Lawrence ML (2008) Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T. J Bacteriol 190:5531–5532
95.
Zurück zum Zitat Richter H, Molitor B, Diender M, Sousa DZ, Angenent LT (2016) A narrow pH Range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-line product extraction. Front Microbiol 7:1773 Richter H, Molitor B, Diender M, Sousa DZ, Angenent LT (2016) A narrow pH Range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-line product extraction. Front Microbiol 7:1773
96.
Zurück zum Zitat Fernandez-Naveira A, Veiga MC, Kennes C (2019) Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresour Technol 280:387–395 Fernandez-Naveira A, Veiga MC, Kennes C (2019) Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols. Bioresour Technol 280:387–395
97.
Zurück zum Zitat Doll K, Ruckel A, Kampf P, Wende M, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng 41:1403–1416 Doll K, Ruckel A, Kampf P, Wende M, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioprocess Biosyst Eng 41:1403–1416
98.
Zurück zum Zitat Abubackar HN, Veiga MC, Kennes C (2018) Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol 253:227–234 Abubackar HN, Veiga MC, Kennes C (2018) Production of acids and alcohols from syngas in a two-stage continuous fermentation process. Bioresour Technol 253:227–234
99.
Zurück zum Zitat Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32:369–380 Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32:369–380
100.
Zurück zum Zitat Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116 Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116
101.
Zurück zum Zitat Beck ZQ, Cervin MA, Chotani GK, Peres Caroline M, Sanford KJ, Scotcher MC, Wells DH, Whited GM (2013) Compositions and methods of producing isoprene and/or industrial bio-products using anaerobic microorganisms. WO/2013/181647 Beck ZQ, Cervin MA, Chotani GK, Peres Caroline M, Sanford KJ, Scotcher MC, Wells DH, Whited GM (2013) Compositions and methods of producing isoprene and/or industrial bio-products using anaerobic microorganisms. WO/2013/181647
102.
Zurück zum Zitat Masahiro F, Akihiro U, Koichiro I, Jennewein S, Fischer R (2013) Recombinant cell, and method for producing isoprene. US9783828B2 Masahiro F, Akihiro U, Koichiro I, Jennewein S, Fischer R (2013) Recombinant cell, and method for producing isoprene. US9783828B2
103.
Zurück zum Zitat Chen W, Liew F, Köpke M (2013) Recombinant microorganisms and uses therefore. WO/2013/180584 Chen W, Liew F, Köpke M (2013) Recombinant microorganisms and uses therefore. WO/2013/180584
104.
Zurück zum Zitat Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM (2018) Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the Conversion of fructose and of syngas to mevalonate and isoprene. Appl Environ Microbiol 84(1):e01723–17 Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM (2018) Synthesis of heterologous mevalonic acid pathway enzymes in Clostridium ljungdahlii for the Conversion of fructose and of syngas to mevalonate and isoprene. Appl Environ Microbiol 84(1):e01723–17
105.
Zurück zum Zitat Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382 binant microorganisms and uses therefore1385 Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382 binant microorganisms and uses therefore1385
Metadaten
Titel
Industriebeispiele und Anwendungsbereiche
verfasst von
Thomas Schwarz
Christoph Gürtler
Torsten Müller
Christophe Mihalcea
Freya Burton
Robert Conrado
Sean Simpson
Biniam T. Maru
Pradeep C. Munasinghe
Shawn W. Jones
Bryan P. Tracy
Ronnie Machielsen
Ross Gordon
Deepak Pant
Metin Bulut
Heleen De Wever
Frank Kensy
Stefan Verseck
Christian Janke
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_16