Skip to main content

2024 | OriginalPaper | Buchkapitel

Industry 5.0: Aspects of Collaboration Technologies

verfasst von : Yevhen Palazhchenko, Vira Shendryk, Vitalii Ivanov, Michal Hatala

Erschienen in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel befasst sich mit der Entwicklung industrieller Revolutionen, wobei der Schwerpunkt auf der Industrie 5.0 liegt, die eine menschenzentrierte und nachhaltige Fertigung betont. Sie identifiziert zentrale Herausforderungen der Mensch-Roboter-Zusammenarbeit wie Sicherheit, mangelnde Empathie und Kommunikationsbarrieren. Der Text untersucht verschiedene Technologien, die diese Probleme angehen, darunter Action-Tracking-Systeme, künstliche Intelligenz, digitale Zwillinge und VR / AR-Technologien. Außerdem wird die Rolle dieser Technologien bei der Verbesserung von Sicherheit, Anpassungsfähigkeit und Kommunikation in kollaborativen Arbeitsräumen diskutiert. Das Kapitel schließt mit der Betonung der entscheidenden Rolle von Kollaborationstechnologien im Industrie-5.0-Paradigma und schlägt zukünftige Forschungsrichtungen vor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ghobakhloo, M., Fathi, M., Iranmanesh, M., Maroufkhani, P., Morales, M.E.: Industry 4.0 ten years on: a bibliometric and systematic review of concepts, sustainability value drivers, and success determinants. J. Clean. Prod. 302, 127052. Elsevier BV (2021) Ghobakhloo, M., Fathi, M., Iranmanesh, M., Maroufkhani, P., Morales, M.E.: Industry 4.0 ten years on: a bibliometric and systematic review of concepts, sustainability value drivers, and success determinants. J. Clean. Prod. 302, 127052. Elsevier BV (2021)
2.
Zurück zum Zitat Rea, P., Ottaviano, E., Machado, J., Antosz, K. (eds.): Design, Applications, and Maintenance of Cyber-Physical Systems. Advances in Systems Analysis, Software Engineering, and High Performance Computing. IGI Global, Hershey (2021) Rea, P., Ottaviano, E., Machado, J., Antosz, K. (eds.): Design, Applications, and Maintenance of Cyber-Physical Systems. Advances in Systems Analysis, Software Engineering, and High Performance Computing. IGI Global, Hershey (2021)
3.
Zurück zum Zitat Demir, K.A., Döven, G., Sezen, B.: Industry 5.0 and human-robot co-working. Procedia Comput. Sci. 158, 688–695. Elsevier BV (2019) Demir, K.A., Döven, G., Sezen, B.: Industry 5.0 and human-robot co-working. Procedia Comput. Sci. 158, 688–695. Elsevier BV (2019)
4.
Zurück zum Zitat Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and Industry 5.0—inception, conception and perception. J. Manuf. Syst. 61, 530–535. Elsevier BV (2021) Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and Industry 5.0—inception, conception and perception. J. Manuf. Syst. 61, 530–535. Elsevier BV (2021)
5.
Zurück zum Zitat Li, S., et al.: Proactive human–robot collaboration: mutual-cognitive, predictable, and self-organising perspectives. Robot. Comput.-Integr. Manuf. 81, 102510. Elsevier BV (2023) Li, S., et al.: Proactive human–robot collaboration: mutual-cognitive, predictable, and self-organising perspectives. Robot. Comput.-Integr. Manuf. 81, 102510. Elsevier BV (2023)
6.
Zurück zum Zitat Evangelou, G., Dimitropoulos, N., Michalos, G., Makris, S.: An approach for task and action planning in human–robot collaborative cells using AI. Procedia CIRP 97, 476–481. Elsevier BV (2021) Evangelou, G., Dimitropoulos, N., Michalos, G., Makris, S.: An approach for task and action planning in human–robot collaborative cells using AI. Procedia CIRP 97, 476–481. Elsevier BV (2021)
7.
Zurück zum Zitat Castro, A., Silva, F., Santos, V.: Trends of human-robot collaboration in industry contexts: handover, learning, and metrics. Sensors 21(12), 4113. MDPI AG (2021) Castro, A., Silva, F., Santos, V.: Trends of human-robot collaboration in industry contexts: handover, learning, and metrics. Sensors 21(12), 4113. MDPI AG (2021)
8.
Zurück zum Zitat Li, S., Wang, R., Zheng, P., Wang, L.: Towards proactive human–robot collaboration: a foreseeable cognitive manufacturing paradigm. J. Manuf. Syst. 60, 547–552. Elsevier BV (2021) Li, S., Wang, R., Zheng, P., Wang, L.: Towards proactive human–robot collaboration: a foreseeable cognitive manufacturing paradigm. J. Manuf. Syst. 60, 547–552. Elsevier BV (2021)
9.
Zurück zum Zitat El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative industrial tasks: an overview. Robot. Auton. Syst. 116, 162–180. Elsevier BV (2019) El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative industrial tasks: an overview. Robot. Auton. Syst. 116, 162–180. Elsevier BV (2019)
10.
Zurück zum Zitat Naneva, S., Sarda Gou, M., Webb, T.L., Prescott, T.J.: A systematic review of attitudes, anxiety, acceptance, and trust towards social robots. Int. J. Soc. Robot. 12(6), 1179–1201. Springer Science and Business Media LLC (2020) Naneva, S., Sarda Gou, M., Webb, T.L., Prescott, T.J.: A systematic review of attitudes, anxiety, acceptance, and trust towards social robots. Int. J. Soc. Robot. 12(6), 1179–1201. Springer Science and Business Media LLC (2020)
11.
Zurück zum Zitat Longo, F., Padovano, A., Umbrello, S.: Value-oriented and ethical technology engineering in industry 5.0: a human-centric perspective for the design of the factory of the future. Appl. Sci. 10(12), 4182. MDPI AG (2020) Longo, F., Padovano, A., Umbrello, S.: Value-oriented and ethical technology engineering in industry 5.0: a human-centric perspective for the design of the factory of the future. Appl. Sci. 10(12), 4182. MDPI AG (2020)
12.
Zurück zum Zitat Khalid, A., Kirisci, P., Ghrairi, Z., Pannek, J., Thoben, K.-D.: Safety requirements in collaborative human–robot cyber-physical system. Dyn. Logist. 41–51, Springer International Publishing (2016) Khalid, A., Kirisci, P., Ghrairi, Z., Pannek, J., Thoben, K.-D.: Safety requirements in collaborative human–robot cyber-physical system. Dyn. Logist. 41–51, Springer International Publishing (2016)
13.
Zurück zum Zitat Zerrouki, N., Harrou, F., Sun, Y., Houacine, A.: Vision-based human action classification using adaptive boosting algorithm. IEEE Sens. J. 18(12), 5115–5121, Institute of Electrical and Electronics Engineers (IEEE) (2018) Zerrouki, N., Harrou, F., Sun, Y., Houacine, A.: Vision-based human action classification using adaptive boosting algorithm. IEEE Sens. J. 18(12), 5115–5121, Institute of Electrical and Electronics Engineers (IEEE) (2018)
14.
Zurück zum Zitat Tölgyessy, M., Dekan, M., Chovanec, Ľ.: Skeleton tracking accuracy and precision evaluation of Kinect V1, Kinect V2, and the azure Kinect. Appl. Sci. 11(12), 5756, MDPI AG (2021) Tölgyessy, M., Dekan, M., Chovanec, Ľ.: Skeleton tracking accuracy and precision evaluation of Kinect V1, Kinect V2, and the azure Kinect. Appl. Sci. 11(12), 5756, MDPI AG (2021)
15.
Zurück zum Zitat Marín-Jiménez, M.J., Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: 3D human pose estimation from depth maps using a deep combination of poses. J. Vis. Commun. Image Represent. 55, 627–639, Elsevier BV (2018) Marín-Jiménez, M.J., Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: 3D human pose estimation from depth maps using a deep combination of poses. J. Vis. Commun. Image Represent. 55, 627–639, Elsevier BV (2018)
16.
Zurück zum Zitat Duan, Y., Zhang, X., Li, Z.: A new quaternion-based Kalman filter for human body motion tracking using the second estimator of the optimal quaternion algorithm and the joint angle constraint method with inertial and magnetic sensors. Sensors 20(21, 6018, MDPI AG (2020) Duan, Y., Zhang, X., Li, Z.: A new quaternion-based Kalman filter for human body motion tracking using the second estimator of the optimal quaternion algorithm and the joint angle constraint method with inertial and magnetic sensors. Sensors 20(21, 6018, MDPI AG (2020)
17.
Zurück zum Zitat Maheswari, B.U., Sonia, R., Raja Kumar, M.P., Ramya, J.: Novel machine learning for human actions classification using histogram of oriented gradients and sparse representation. Inf. Technol. Control 50(4), 686–705, Kaunas University of Technology (KTU) (2021) Maheswari, B.U., Sonia, R., Raja Kumar, M.P., Ramya, J.: Novel machine learning for human actions classification using histogram of oriented gradients and sparse representation. Inf. Technol. Control 50(4), 686–705, Kaunas University of Technology (KTU) (2021)
18.
Zurück zum Zitat Lo Presti, L., La Cascia, M.: 3D skeleton-based human action classification: a survey. Pattern Recogn. 53, 130–147, Elsevier BV (2016) Lo Presti, L., La Cascia, M.: 3D skeleton-based human action classification: a survey. Pattern Recogn. 53, 130–147, Elsevier BV (2016)
19.
Zurück zum Zitat Gharaee, Z., Gärdenfors, P., Johnsson, M.: Hierarchical self-organizing maps system for action classification. In: Proceedings of the 9th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications (2017) Gharaee, Z., Gärdenfors, P., Johnsson, M.: Hierarchical self-organizing maps system for action classification. In: Proceedings of the 9th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications (2017)
20.
Zurück zum Zitat Gharaee, Z., Gärdenfors, P., Johnsson, M.: Online recognition of actions involving objects. In: Biologically Inspired Cognitive Architectures, vol. 22, pp. 10–19. Elsevier BV (2017) Gharaee, Z., Gärdenfors, P., Johnsson, M.: Online recognition of actions involving objects. In: Biologically Inspired Cognitive Architectures, vol. 22, pp. 10–19. Elsevier BV (2017)
21.
Zurück zum Zitat Hernández-García, R., Ramos-Cózar, J., Guil, N., García-Reyes, E., Sahli, H.: Improving bag-of-visual-words model using visual n-grams for human action classification. Expert Syst. Appl. 92, 182–191. Elsevier BV (2018) Hernández-García, R., Ramos-Cózar, J., Guil, N., García-Reyes, E., Sahli, H.: Improving bag-of-visual-words model using visual n-grams for human action classification. Expert Syst. Appl. 92, 182–191. Elsevier BV (2018)
22.
Zurück zum Zitat Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.-K.: First-person hand action benchmark with RGB-D videos and 3D hand pose annotations. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE (2018) Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.-K.: First-person hand action benchmark with RGB-D videos and 3D hand pose annotations. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE (2018)
23.
Zurück zum Zitat Deuerlein, C., Langer, M., Seßner, J., Heß, P., Franke, J.: Human-robot-interaction using cloud-based speech recognition systems. Procedia CIRP 97, 130–135. Elsevier BV (2021) Deuerlein, C., Langer, M., Seßner, J., Heß, P., Franke, J.: Human-robot-interaction using cloud-based speech recognition systems. Procedia CIRP 97, 130–135. Elsevier BV (2021)
24.
Zurück zum Zitat Hareendar, S., Jeya Raghul R., Aashish, K.: Brain computer interface for controlling mobile robot. Int. J. Recent Technol. Eng. 8(2S4), 152–156. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP (2019) Hareendar, S., Jeya Raghul R., Aashish, K.: Brain computer interface for controlling mobile robot. Int. J. Recent Technol. Eng. 8(2S4), 152–156. Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP (2019)
25.
Zurück zum Zitat Peruzzini, M., Grandi, F., Pellicciari, M.: Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng. 139, 105600. Elsevier BV (2020) Peruzzini, M., Grandi, F., Pellicciari, M.: Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng. 139, 105600. Elsevier BV (2020)
26.
Zurück zum Zitat Pérez, L., Diez, E., Usamentiaga, R., García, D.F.: Industrial robot control and operator training using virtual reality interfaces. Comput. Ind. 109, 114–120. Elsevier BV (2019) Pérez, L., Diez, E., Usamentiaga, R., García, D.F.: Industrial robot control and operator training using virtual reality interfaces. Comput. Ind. 109, 114–120. Elsevier BV (2019)
27.
Zurück zum Zitat Bartolozzi, C., Natale, L., Nori, F., Metta, G.: Robots with a sense of touch. Nat. Mater. 15(9), 921–925. Springer Science and Business Media LLC (2016) Bartolozzi, C., Natale, L., Nori, F., Metta, G.: Robots with a sense of touch. Nat. Mater. 15(9), 921–925. Springer Science and Business Media LLC (2016)
28.
Zurück zum Zitat Duan, X., Taurand, S., Soleimani, M.: Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning. Sci. Rep. 9(1). Springer Science and Business Media LLC (2019) Duan, X., Taurand, S., Soleimani, M.: Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning. Sci. Rep. 9(1). Springer Science and Business Media LLC (2019)
29.
Zurück zum Zitat Sun, H., Martius, G.: Machine learning for haptics: inferring multi-contact stimulation from sparse sensor configuration. Front. Neurorobot. 13. Frontiers Media SA (2019) Sun, H., Martius, G.: Machine learning for haptics: inferring multi-contact stimulation from sparse sensor configuration. Front. Neurorobot. 13. Frontiers Media SA (2019)
30.
Zurück zum Zitat Girbés-Juan, V., Schettino, V., Gracia, L., Solanes, J.E., Demiris, Y., Tornero, J.: Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot. J. Multimodal User Interfaces 16(2), 219–238. Springer Science and Business Media LLC (2022) Girbés-Juan, V., Schettino, V., Gracia, L., Solanes, J.E., Demiris, Y., Tornero, J.: Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot. J. Multimodal User Interfaces 16(2), 219–238. Springer Science and Business Media LLC (2022)
31.
Zurück zum Zitat Yang, W.-T., Chen, B.-H., Lin, P.-C.: A dual-arm manipulation strategy using position/force errors and Kalman filter. Trans. Inst. Meas. Control 44(4), 820–834. SAGE Publications (2021) Yang, W.-T., Chen, B.-H., Lin, P.-C.: A dual-arm manipulation strategy using position/force errors and Kalman filter. Trans. Inst. Meas. Control 44(4), 820–834. SAGE Publications (2021)
32.
Zurück zum Zitat Sone, J., Matsumoto, Y., Yasuda, Y., Hasegawa, S., Yamada, K.: Development of MEMS tactile sensation device for haptic robot. J. Robot. Mechatronics 32(2), 315–322. Fuji Technology Press Ltd. (2020) Sone, J., Matsumoto, Y., Yasuda, Y., Hasegawa, S., Yamada, K.: Development of MEMS tactile sensation device for haptic robot. J. Robot. Mechatronics 32(2), 315–322. Fuji Technology Press Ltd. (2020)
33.
Zurück zum Zitat Lu, Y., Liu, C., Wang, K.I.-K., Huang, H., Xu, X.: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 61, 101837. Elsevier BV (2020) Lu, Y., Liu, C., Wang, K.I.-K., Huang, H., Xu, X.: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 61, 101837. Elsevier BV (2020)
34.
Zurück zum Zitat Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952–108971. Institute of Electrical and Electronics Engineers (IEEE) (2020) Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8, 108952–108971. Institute of Electrical and Electronics Engineers (IEEE) (2020)
35.
Zurück zum Zitat Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671. Institute of Electrical and Electronics Engineers (IEEE) (2019) Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671. Institute of Electrical and Electronics Engineers (IEEE) (2019)
36.
Zurück zum Zitat He, B., Bai, K.-J.: Digital twin-based sustainable intelligent manufacturing: a review. Adv. Manuf. 9(1), 1–21. Springer Science and Business Media LLC (2020) He, B., Bai, K.-J.: Digital twin-based sustainable intelligent manufacturing: a review. Adv. Manuf. 9(1), 1–21. Springer Science and Business Media LLC (2020)
37.
Zurück zum Zitat Huynh, B.H., Akhtar, H., Sett, M.K.: A universal methodology to create digital twins for serial and parallel manipulators. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE (2019) Huynh, B.H., Akhtar, H., Sett, M.K.: A universal methodology to create digital twins for serial and parallel manipulators. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE (2019)
38.
Zurück zum Zitat Zhang, Z., Lu, J., Xia, L., Wang, S., Zhang, H., Zhao, R.: Digital twin system design for dual-manipulator cooperation unit. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE (2020) Zhang, Z., Lu, J., Xia, L., Wang, S., Zhang, H., Zhao, R.: Digital twin system design for dual-manipulator cooperation unit. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE (2020)
39.
Zurück zum Zitat Bevilacqua, M., et al.: Digital twin reference model development to prevent operators’ risk in process plants. Sustainability 12(3), 1088. MDPI AG (2020) Bevilacqua, M., et al.: Digital twin reference model development to prevent operators’ risk in process plants. Sustainability 12(3), 1088. MDPI AG (2020)
40.
Zurück zum Zitat Inkulu, A.K., Bahubalendruni, M.V.A.R., Dara, A., SankaranarayanaSamy, K.: Challenges and opportunities in human robot collaboration context of industry 4.0 – a state of the art review. Ind. Robot. 49(2), 226–239 (2022). https://doi.org/10.1108/IR-04-2021-0077 Inkulu, A.K., Bahubalendruni, M.V.A.R., Dara, A., SankaranarayanaSamy, K.: Challenges and opportunities in human robot collaboration context of industry 4.0 – a state of the art review. Ind. Robot. 49(2), 226–239 (2022). https://​doi.​org/​10.​1108/​IR-04-2021-0077
43.
Zurück zum Zitat Verna, E., Puttero, S., Genta, G., Galetto, M.: Challenges and opportunities of collaborative robots for quality control in manufacturing: evidences from research and industry. In: Sampaio, P., et al. (eds.) Proceeding of the International Conference on Quality Engineering and Management, pp. 235–262 (2022) Verna, E., Puttero, S., Genta, G., Galetto, M.: Challenges and opportunities of collaborative robots for quality control in manufacturing: evidences from research and industry. In: Sampaio, P., et al. (eds.) Proceeding of the International Conference on Quality Engineering and Management, pp. 235–262 (2022)
Metadaten
Titel
Industry 5.0: Aspects of Collaboration Technologies
verfasst von
Yevhen Palazhchenko
Vira Shendryk
Vitalii Ivanov
Michal Hatala
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_71