Skip to main content
Erschienen in:

02.07.2022

Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions

verfasst von: Devendra Pratap Singh, Mayank Kumar Jha, Yogesh Mani Tripathi, Liang Wang

Erschienen in: Annals of Data Science | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We make inference for a multicomponent stress-strength (MS) model under type-II censoring. It is assumed that lifetimes of strength and stress components follow unit Burr III distributions. Maximum likelihood estimator of MS parameter is obtained under a common shape parameter and in sequel approximate confidence intervals are constructed. Pivotal quantities based inference is also discussed. The case of unequal common parameters is considered as well and various inferences are derived. In addition, likelihood ratio tests are constructed to test the equivalence of parameters of interest. We conduct a simulation study to examine the behavior of proposed estimation procedures. A real data set is also analyzed from application viewpoint.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shi Y (2022) Advances in big data analytics: theory, algorithms and practices. Springer Nature, BerlinCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithms and practices. Springer Nature, BerlinCrossRef
2.
Zurück zum Zitat Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
3.
Zurück zum Zitat Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Annals of Data Science 4(2):149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Annals of Data Science 4(2):149–178CrossRef
4.
Zurück zum Zitat Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer Science & Business Media, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer Science & Business Media, BerlinCrossRef
5.
Zurück zum Zitat Lawless JF (2003) Statistical Models and Methods for Lifetime Data. Wiley, New York Lawless JF (2003) Statistical Models and Methods for Lifetime Data. Wiley, New York
6.
Zurück zum Zitat Birnbaum ZW et al (1956) On a use of the mann-whitney statistic. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California Birnbaum ZW et al (1956) On a use of the mann-whitney statistic. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California
7.
Zurück zum Zitat Birnbaum ZW, McCarty, RC (1958) A distribution-free upper confidence bound for \(p(y<x)\), based on independent samples of x and y. The Annals of Mathematical Statistics, pages 558–562 Birnbaum ZW, McCarty, RC (1958) A distribution-free upper confidence bound for \(p(y<x)\), based on independent samples of x and y. The Annals of Mathematical Statistics, pages 558–562
8.
Zurück zum Zitat Constantine K, Tse S-K, Karson M (1986) Estimation of \(p (y< x)\) in the gamma case. Communications in Statistics-Simulation and Computation 15(2):365–388CrossRef Constantine K, Tse S-K, Karson M (1986) Estimation of \(p (y< x)\) in the gamma case. Communications in Statistics-Simulation and Computation 15(2):365–388CrossRef
9.
Zurück zum Zitat Ahmad KE, Fakhry ME, Jaheen ZF (1997) Empirical bayes estimation of \( p (y< x)\) and characterizations of burr-type x model. Journal of Statistical Planning and Inference 64(2):297–308CrossRef Ahmad KE, Fakhry ME, Jaheen ZF (1997) Empirical bayes estimation of \( p (y< x)\) and characterizations of burr-type x model. Journal of Statistical Planning and Inference 64(2):297–308CrossRef
10.
Zurück zum Zitat Kundu D, Gupta RD (2005) Estimation of \( p (y< x)\) for generalized exponential distribution. Metrika 61(3):291–308CrossRef Kundu D, Gupta RD (2005) Estimation of \( p (y< x)\) for generalized exponential distribution. Metrika 61(3):291–308CrossRef
11.
Zurück zum Zitat Gunasekera S (2015) Generalized inferences of \( p(x> y)\) for pareto distribution. Stat Pap 56(2):333–351CrossRef Gunasekera S (2015) Generalized inferences of \( p(x> y)\) for pareto distribution. Stat Pap 56(2):333–351CrossRef
12.
Zurück zum Zitat Kotz S, Pensky M (2003) The stress-strength model and its generalizations: theory and applications. World Scientific, New JerseyCrossRef Kotz S, Pensky M (2003) The stress-strength model and its generalizations: theory and applications. World Scientific, New JerseyCrossRef
13.
Zurück zum Zitat Bhattacharyya GK, Johnson RA (1974) Estimation of reliability in a multicomponent stress-strength model. J Am Stat Assoc 69(348):966–970CrossRef Bhattacharyya GK, Johnson RA (1974) Estimation of reliability in a multicomponent stress-strength model. J Am Stat Assoc 69(348):966–970CrossRef
14.
Zurück zum Zitat Srinivasa Rao G, Kantam RRL (2010) Acceptance sampling plans from truncated life tests based on the log-logistic distributions for percentiles. Economic Quality Control 25(2):153–167 Srinivasa Rao G, Kantam RRL (2010) Acceptance sampling plans from truncated life tests based on the log-logistic distributions for percentiles. Economic Quality Control 25(2):153–167
15.
Zurück zum Zitat Gadde Srinivasa Rao (2012) Estimation of reliability in multicomponent stress-strength based on generalized exponential distribution. Revista Colombiana de Estadistica 35(1):67–76 Gadde Srinivasa Rao (2012) Estimation of reliability in multicomponent stress-strength based on generalized exponential distribution. Revista Colombiana de Estadistica 35(1):67–76
16.
Zurück zum Zitat Srinivasa Rao G, Aslam M, Arif OH (2017) Estimation of reliability in multicomponent stress-strength based on two parameter exponentiated weibull distribution. Communications in Statistics-Theory and Methods 46(15):7495–7502CrossRef Srinivasa Rao G, Aslam M, Arif OH (2017) Estimation of reliability in multicomponent stress-strength based on two parameter exponentiated weibull distribution. Communications in Statistics-Theory and Methods 46(15):7495–7502CrossRef
17.
Zurück zum Zitat Kizilaslan F, Nadar M (2015) Classical and bayesian estimation of reliability inmulticomponent stress-strength model based on weibull distribution. Revista Colombiana de Estadistica 38(2):467–484CrossRef Kizilaslan F, Nadar M (2015) Classical and bayesian estimation of reliability inmulticomponent stress-strength model based on weibull distribution. Revista Colombiana de Estadistica 38(2):467–484CrossRef
18.
Zurück zum Zitat Kizilaslan F (2017) Classical and bayesian estimation of reliability in a multicomponent stress-strength model based on the proportional reversed hazard rate mode. Math Comput Simul 136:36–62CrossRef Kizilaslan F (2017) Classical and bayesian estimation of reliability in a multicomponent stress-strength model based on the proportional reversed hazard rate mode. Math Comput Simul 136:36–62CrossRef
19.
Zurück zum Zitat Dey S, Moala FA, and (2019) Estimation of reliability of multicomponent stress-strength of a bathtub shape or increasing failure rate function. International Journal of Quality & Reliability Management 36(2):122–136CrossRef Dey S, Moala FA, and (2019) Estimation of reliability of multicomponent stress-strength of a bathtub shape or increasing failure rate function. International Journal of Quality & Reliability Management 36(2):122–136CrossRef
20.
Zurück zum Zitat Wang L, Dey S, Tripathi YM, Shuo-Jye W (2020) Reliability inference for a multicomponent stress-strength model based on kumaraswamy distribution. J Comput Appl Math 376:112823CrossRef Wang L, Dey S, Tripathi YM, Shuo-Jye W (2020) Reliability inference for a multicomponent stress-strength model based on kumaraswamy distribution. J Comput Appl Math 376:112823CrossRef
21.
Zurück zum Zitat Jha MK, Dey S, Alotaibi RM, Tripathi YM (2020) Reliability estimation of a multicomponent stress-strength model for unit gompertz distribution under progressive type ii censoring. Qual Reliab Eng Int 36(3):965–987CrossRef Jha MK, Dey S, Alotaibi RM, Tripathi YM (2020) Reliability estimation of a multicomponent stress-strength model for unit gompertz distribution under progressive type ii censoring. Qual Reliab Eng Int 36(3):965–987CrossRef
22.
Zurück zum Zitat Srinivasa Rao G, Kantam RRL, Rosaiah K, Reddy J Pratapa (2013) Estimation of reliability in multicomponent stress-strength based on inverse rayleigh distribution. Journal of Statistics Applications & Probability 2(3):261CrossRef Srinivasa Rao G, Kantam RRL, Rosaiah K, Reddy J Pratapa (2013) Estimation of reliability in multicomponent stress-strength based on inverse rayleigh distribution. Journal of Statistics Applications & Probability 2(3):261CrossRef
23.
Zurück zum Zitat Rao GS (2014) Estimation of reliability in multicomponent stress-strength based on generalized rayleigh distribution. J Mod Appl Stat Methods 13(1):24CrossRef Rao GS (2014) Estimation of reliability in multicomponent stress-strength based on generalized rayleigh distribution. J Mod Appl Stat Methods 13(1):24CrossRef
24.
Zurück zum Zitat Kohansal A, Shoaee S (2019) Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data. Statistical Papers, pages 1–51 Kohansal A, Shoaee S (2019) Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data. Statistical Papers, pages 1–51
25.
Zurück zum Zitat Kayal T, Tripathi YM, Dey S, Wu S-J (2019) On estimating the reliability in a multicomponent stress-strength model based on chen distribution. Communications in Statistics-Theory and Methods, pages 1–19 Kayal T, Tripathi YM, Dey S, Wu S-J (2019) On estimating the reliability in a multicomponent stress-strength model based on chen distribution. Communications in Statistics-Theory and Methods, pages 1–19
26.
Zurück zum Zitat Dey S, Mazucheli J, Anis MZ (2017) Estimation of reliability of multicomponent stress-strength for a kumaraswamy distribution. Communications in Statistics-Theory and Methods 46(4):1560–1572CrossRef Dey S, Mazucheli J, Anis MZ (2017) Estimation of reliability of multicomponent stress-strength for a kumaraswamy distribution. Communications in Statistics-Theory and Methods 46(4):1560–1572CrossRef
27.
Zurück zum Zitat Alotaibi RM, Tripathi YM, Dey S, Rezk HR (2020) Bayesian and non-bayesian reliability estimation of multicomponent stress-strength model for unit weibull distribution. Journal of Taibah University for Science 14(1):1164–1181CrossRef Alotaibi RM, Tripathi YM, Dey S, Rezk HR (2020) Bayesian and non-bayesian reliability estimation of multicomponent stress-strength model for unit weibull distribution. Journal of Taibah University for Science 14(1):1164–1181CrossRef
28.
Zurück zum Zitat Sharma VK, Dey S (2019) Estimation of reliability of multicomponent stress-strength inverted exponentiated rayleigh model. J Ind Prod Eng 36(3):181–192 Sharma VK, Dey S (2019) Estimation of reliability of multicomponent stress-strength inverted exponentiated rayleigh model. J Ind Prod Eng 36(3):181–192
29.
Zurück zum Zitat Alotaibi RM, Tripathi YM, Dey S, Rezk HR (2021) Estimation of multicomponent reliability based on progressively type ii censored data from unit weibull distribution. WSEAS Transactions on Mathematics 20:288–299CrossRef Alotaibi RM, Tripathi YM, Dey S, Rezk HR (2021) Estimation of multicomponent reliability based on progressively type ii censored data from unit weibull distribution. WSEAS Transactions on Mathematics 20:288–299CrossRef
30.
Zurück zum Zitat Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13(2):215–232CrossRef Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13(2):215–232CrossRef
31.
Zurück zum Zitat Wang F-K, Lee C-W (2011) M-estimator with asymmetric influence function for estimating the burr type iii parameters with outliers. Computers & Mathematics with Applications 62(4):1896–1907CrossRef Wang F-K, Lee C-W (2011) M-estimator with asymmetric influence function for estimating the burr type iii parameters with outliers. Computers & Mathematics with Applications 62(4):1896–1907CrossRef
32.
Zurück zum Zitat Lindsay SR, Wood GR, Woollons RC (1996) Modelling the diameter distribution of forest stands using the burr distribution. J Appl Stat 23(6):609–620CrossRef Lindsay SR, Wood GR, Woollons RC (1996) Modelling the diameter distribution of forest stands using the burr distribution. J Appl Stat 23(6):609–620CrossRef
33.
Zurück zum Zitat Clark RM, Cox SJD, Laslett GM (1999) Generalizations of power-law distributions applicable to sampled fault-trace lengths: model choice, parameter estimation and caveats. Geophys J Int 136(2):357–372CrossRef Clark RM, Cox SJD, Laslett GM (1999) Generalizations of power-law distributions applicable to sampled fault-trace lengths: model choice, parameter estimation and caveats. Geophys J Int 136(2):357–372CrossRef
34.
Zurück zum Zitat Shao Q (2000) Estimation for hazardous concentrations based on noec toxicity data: an alternative approach. Environmetrics 11(5):583–595CrossRef Shao Q (2000) Estimation for hazardous concentrations based on noec toxicity data: an alternative approach. Environmetrics 11(5):583–595CrossRef
35.
Zurück zum Zitat Singh DP, Tripathi YM, Rastogi MK, Dabral N (2017) Estimation and prediction for a burr type-iii distribution with progressive censoring. Communications in Statistics-Theory and Methods 46(19):9591–9613CrossRef Singh DP, Tripathi YM, Rastogi MK, Dabral N (2017) Estimation and prediction for a burr type-iii distribution with progressive censoring. Communications in Statistics-Theory and Methods 46(19):9591–9613CrossRef
36.
Zurück zum Zitat Chakraborty S, Handique L, Usman RM (2020) A simple extension of burr-iii distribution and its advantages over existing ones in modelling failure time data. Annals of Data Science 7(1):17–31CrossRef Chakraborty S, Handique L, Usman RM (2020) A simple extension of burr-iii distribution and its advantages over existing ones in modelling failure time data. Annals of Data Science 7(1):17–31CrossRef
37.
Zurück zum Zitat Yadav AS, Altun E, Yousof HM (2021) Burr-hatke exponential distribution: a decreasing failure rate model, statistical inference and applications. Annals of Data Science 8(2):241–260CrossRef Yadav AS, Altun E, Yousof HM (2021) Burr-hatke exponential distribution: a decreasing failure rate model, statistical inference and applications. Annals of Data Science 8(2):241–260CrossRef
38.
Zurück zum Zitat Weerahandi S (2004) Generalized inference in repeated measures: exact methods in MANOVA and mixed models, vol 500. John Wiley & Sons, Newyork Weerahandi S (2004) Generalized inference in repeated measures: exact methods in MANOVA and mixed models, vol 500. John Wiley & Sons, Newyork
39.
Zurück zum Zitat Kizilaslan F (2018) Classical and bayesian estimation of reliability in a multicomponent stress-strength model based on a general class of inverse exponentiated distributions. Stat Pap 59(3):1161–1192CrossRef Kizilaslan F (2018) Classical and bayesian estimation of reliability in a multicomponent stress-strength model based on a general class of inverse exponentiated distributions. Stat Pap 59(3):1161–1192CrossRef
41.
Zurück zum Zitat Xu J, Long JS (2005) Using the delta method to construct confidence intervals for predicted probabilities, rates, and discrete changes. The Stata Journal Xu J, Long JS (2005) Using the delta method to construct confidence intervals for predicted probabilities, rates, and discrete changes. The Stata Journal
42.
Zurück zum Zitat Stephens M (1986) Tests for the exponential distribution. In: D’Agostino RB, Stephens M (eds) Goodness-of-fit techniques. Marcel Dekker, New York, pp 421–459 Stephens M (1986) Tests for the exponential distribution. In: D’Agostino RB, Stephens M (eds) Goodness-of-fit techniques. Marcel Dekker, New York, pp 421–459
43.
Zurück zum Zitat Viveros R, Balakrishnan N (1994) Interval estimation of parameters of life from progressively censored data. Technometrics 36(1):84–91CrossRef Viveros R, Balakrishnan N (1994) Interval estimation of parameters of life from progressively censored data. Technometrics 36(1):84–91CrossRef
Metadaten
Titel
Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions
verfasst von
Devendra Pratap Singh
Mayank Kumar Jha
Yogesh Mani Tripathi
Liang Wang
Publikationsdatum
02.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 5/2023
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00429-1