Skip to main content

2024 | OriginalPaper | Buchkapitel

Infinite-Variate \(L^2\)-Approximation with Nested Subspace Sampling

verfasst von : Kumar Harsha, Michael Gnewuch, Marcin Wnuk

Erschienen in: Monte Carlo and Quasi-Monte Carlo Methods

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider \(L^2\)-approximation on weighted reproducing kernel Hilbert spaces of functions depending on infinitely many variables. We focus on unrestricted linear information, admitting evaluations of arbitrary continuous linear functionals. We distinguish between ANOVA and non-ANOVA spaces, where, by ANOVA spaces, we refer to function spaces whose norms are induced by an underlying ANOVA function decomposition. In ANOVA spaces, we provide an optimal algorithm to solve the approximation problem using linear information. We determine the upper and lower error bounds on the polynomial convergence rate of n-th minimal worst-case errors, which match if the weights decay regularly. For non-ANOVA spaces, we also establish upper and lower error bounds. Our analysis reveals that for weights with a regular and moderate decay behavior, the convergence rate of n-th minimal errors is strictly higher in ANOVA than in non-ANOVA spaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Baldeaux, J., Gnewuch, M.: Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. SIAM J. Numer. Anal. 52, 1128–1155 (2014)MathSciNetCrossRef Baldeaux, J., Gnewuch, M.: Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. SIAM J. Numer. Anal. 52, 1128–1155 (2014)MathSciNetCrossRef
3.
Zurück zum Zitat Dick, J., Gnewuch, M.: Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher order convergence. Found. Comput. Math. 14, 1027–1077 (2014)MathSciNetCrossRef Dick, J., Gnewuch, M.: Infinite-dimensional integration in weighted Hilbert spaces: anchored decompositions, optimal deterministic algorithms, and higher order convergence. Found. Comput. Math. 14, 1027–1077 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Dick, J., Gnewuch, M.: Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. J. Approx. Theory 184, 111–145 (2014)MathSciNetCrossRef Dick, J., Gnewuch, M.: Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. J. Approx. Theory 184, 111–145 (2014)MathSciNetCrossRef
5.
Zurück zum Zitat Fasshauer, G.E., Hickernell, F.J., Woźniakowski, H.: On dimension-independent rates of convergence for function approximation with Gaussian kernels. SIAM J. Numer. Anal. 50(1), 247–271 (2012)MathSciNetCrossRef Fasshauer, G.E., Hickernell, F.J., Woźniakowski, H.: On dimension-independent rates of convergence for function approximation with Gaussian kernels. SIAM J. Numer. Anal. 50(1), 247–271 (2012)MathSciNetCrossRef
6.
Zurück zum Zitat Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K.: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration. J. Approx. Theory 222, 8–39 (2017)MathSciNetCrossRef Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K.: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration. J. Approx. Theory 222, 8–39 (2017)MathSciNetCrossRef
7.
Zurück zum Zitat Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K., Wasilkowski, G.W.: Embeddings for infinite-dimensional integration and \({L}_2\)-approximation with increasing smoothness. J. Complexity 54, 101406 (2019)MathSciNetCrossRef Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K., Wasilkowski, G.W.: Embeddings for infinite-dimensional integration and \({L}_2\)-approximation with increasing smoothness. J. Complexity 54, 101406 (2019)MathSciNetCrossRef
8.
Zurück zum Zitat Gnewuch, M., Hinrichs, A., Ritter, K., Rüßmann, R.: Infinite-dimensional integration and \({L}^2\)-approximation on Hermite spaces. J. Approx. Theory (2024) Gnewuch, M., Hinrichs, A., Ritter, K., Rüßmann, R.: Infinite-dimensional integration and \({L}^2\)-approximation on Hermite spaces. J. Approx. Theory (2024)
9.
Zurück zum Zitat Gnewuch, M., Mayer, S., Ritter, K.: On weighted Hilbert spaces and integration of functions of infinitely many variables. J. Complexity 30, 29–47 (2014)MathSciNetCrossRef Gnewuch, M., Mayer, S., Ritter, K.: On weighted Hilbert spaces and integration of functions of infinitely many variables. J. Complexity 30, 29–47 (2014)MathSciNetCrossRef
10.
Zurück zum Zitat Hefter, M., Ritter, K.: On embeddings of weighted tensor product Hilbert spaces. J. Complexity 31, 405–423 (2015)MathSciNetCrossRef Hefter, M., Ritter, K.: On embeddings of weighted tensor product Hilbert spaces. J. Complexity 31, 405–423 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Hickernell, F.J., Müller-Gronbach, T., Niu, B., Ritter, K.: Multi-level Monte Carlo algorithms for infinite-dimensional integration on \(\mathbb{R} ^{{\mathbb{N} }}\). J. Complexity 26, 229–254 (2010)MathSciNetCrossRef Hickernell, F.J., Müller-Gronbach, T., Niu, B., Ritter, K.: Multi-level Monte Carlo algorithms for infinite-dimensional integration on \(\mathbb{R} ^{{\mathbb{N} }}\). J. Complexity 26, 229–254 (2010)MathSciNetCrossRef
12.
Zurück zum Zitat Irrgeher, C., Kritzer, P., Pillichshammer, F., Woźniakowski, H.: Approximation in Hermite spaces of smooth functions. J. Approx. Theory 207, 98–126 (2016). ISSN 0021-9045 Irrgeher, C., Kritzer, P., Pillichshammer, F., Woźniakowski, H.: Approximation in Hermite spaces of smooth functions. J. Approx. Theory 207, 98–126 (2016). ISSN 0021-9045
13.
Zurück zum Zitat Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: Liberating the dimension. J. Complex. 26, 422–454 (2010)MathSciNetCrossRef Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: Liberating the dimension. J. Complex. 26, 422–454 (2010)MathSciNetCrossRef
14.
Zurück zum Zitat Müller-Gronbach, T., Ritter, K.: Variable subspace sampling and multi-level algorithms. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer (2009) Müller-Gronbach, T., Ritter, K.: Variable subspace sampling and multi-level algorithms. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer (2009)
15.
Zurück zum Zitat Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 1: Linear Information. EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2008) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 1: Linear Information. EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2008)
16.
Zurück zum Zitat Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic, New York (1988) Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic, New York (1988)
17.
Zurück zum Zitat Wasilkowski, G.W.: Liberating the dimension for \({L}_2\)-approximation. J. Complex. 28, 304–319 (2012)CrossRef Wasilkowski, G.W.: Liberating the dimension for \({L}_2\)-approximation. J. Complex. 28, 304–319 (2012)CrossRef
18.
Zurück zum Zitat Wasilkowski, G.W., Woźniakowski, H.: Liberating the dimension for function approximation. J. Complex. 27, 86–110 (2011)MathSciNetCrossRef Wasilkowski, G.W., Woźniakowski, H.: Liberating the dimension for function approximation. J. Complex. 27, 86–110 (2011)MathSciNetCrossRef
19.
Zurück zum Zitat Wnuk, M.: A short note on compact embeddings of reproducing kernel Hilbert spaces in \({L}^2\) for infinite-variate function approximation. In Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods. Springer (2024) Wnuk, M.: A short note on compact embeddings of reproducing kernel Hilbert spaces in \({L}^2\) for infinite-variate function approximation. In Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods. Springer (2024)
Metadaten
Titel
Infinite-Variate -Approximation with Nested Subspace Sampling
verfasst von
Kumar Harsha
Michael Gnewuch
Marcin Wnuk
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_16