Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2016

01.02.2016 | Original Research

Infinitely many solutions for fractional differential system via variational method

verfasst von: Yulin Zhao, Haibo Chen, Qiming Zhang

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we investigate a boundary value problem for a coupled nonlinear differential system of fractional order. Under appropriate hypotheses and by applying the critical point theorem, we obtain some new criteria to guarantee that the fractional differential system has infinitely many weak solutions. In addition, an example is given to illustrate the main results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)MATH
2.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)MATH
3.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equation. Spring, Heidelberg (2010)CrossRefMATH Diethelm, K.: The Analysis of Fractional Differential Equation. Spring, Heidelberg (2010)CrossRefMATH
4.
Zurück zum Zitat Zhang, S.: Existence of solution for a boundary value problem of fractional order. Acta Math. Sci. Ser. B 2, 220–228 (2006)CrossRefMathSciNetMATH Zhang, S.: Existence of solution for a boundary value problem of fractional order. Acta Math. Sci. Ser. B 2, 220–228 (2006)CrossRefMathSciNetMATH
5.
Zurück zum Zitat Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)MathSciNetCrossRefMATH Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217, 480–487 (2010)MathSciNetCrossRefMATH Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217, 480–487 (2010)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Zhao, Y., Chen, H., Huang, L.: Existence of positive solutions for nonlinear fractional functional differential equation. Comput. Math. Appl. 64, 3456–3467 (2012)MathSciNetCrossRefMATH Zhao, Y., Chen, H., Huang, L.: Existence of positive solutions for nonlinear fractional functional differential equation. Comput. Math. Appl. 64, 3456–3467 (2012)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)MathSciNetCrossRefMATH Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional \(q\)-difference equations with nonlocal \(q\)-integral boundary conditions. Adv. Differ. Equ. 2013(48), 1–15 (2013)MathSciNetCrossRef Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional \(q\)-difference equations with nonlocal \(q\)-integral boundary conditions. Adv. Differ. Equ. 2013(48), 1–15 (2013)MathSciNetCrossRef
10.
Zurück zum Zitat Jia, M., Liu, X.: Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions. Appl. Math. Comput. 232, 313–323 (2014)MathSciNetCrossRef Jia, M., Liu, X.: Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions. Appl. Math. Comput. 232, 313–323 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Bai, C., Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150, 611–621 (2004)MathSciNetCrossRefMATH Bai, C., Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl. Math. Comput. 150, 611–621 (2004)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)MathSciNetCrossRefMATH Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Ahmad, B., Nieto, Juan J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)MathSciNetCrossRefMATH Ahmad, B., Nieto, Juan J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Sun, S., Li, Q., Li, Y.: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64, 3310–3320 (2012)MathSciNetCrossRefMATH Sun, S., Li, Q., Li, Y.: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64, 3310–3320 (2012)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Zhao, Y., Chen, H., Qin, B.: Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods. Appl. Math. Comput. 257, 417–427 (2015)MathSciNetCrossRef Zhao, Y., Chen, H., Qin, B.: Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods. Appl. Math. Comput. 257, 417–427 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurcat. Chaos 22, 1250086 (2012)MathSciNetCrossRefMATH Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurcat. Chaos 22, 1250086 (2012)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)MathSciNetCrossRefMATH Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181–1199 (2011)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)CrossRefMATH Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)CrossRefMATH
19.
20.
21.
Zurück zum Zitat Bonanno, G., Molica Bisci, G.: Infinitely many solutions for a boundary value problems with discontinuous nonlinearities. Bound. Value Prob. 2009(670675), 1–20 (2009)MathSciNetMATH Bonanno, G., Molica Bisci, G.: Infinitely many solutions for a boundary value problems with discontinuous nonlinearities. Bound. Value Prob. 2009(670675), 1–20 (2009)MathSciNetMATH
22.
Zurück zum Zitat Bonanno, G., Marano, S.A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 89, 1–10 (2010)MathSciNetCrossRefMATH Bonanno, G., Marano, S.A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 89, 1–10 (2010)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Tang, C., Wu, X.: Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems. J. Differ. Equ. 248, 660–692 (2010)MathSciNetCrossRefMATH Tang, C., Wu, X.: Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems. J. Differ. Equ. 248, 660–692 (2010)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Zhao, Y., Wang, X., Liu, X.: New results for perturbed second-order impulsive differential equation on the half-line. Bound. Value Probl. 2014(246), 1–15 (2014)MathSciNet Zhao, Y., Wang, X., Liu, X.: New results for perturbed second-order impulsive differential equation on the half-line. Bound. Value Probl. 2014(246), 1–15 (2014)MathSciNet
25.
Zurück zum Zitat Erwin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)CrossRefMathSciNetMATH Erwin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)CrossRefMathSciNetMATH
26.
Zurück zum Zitat Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \({ R^N},\) Nonlinear Anal. Nonlinear Anal. RWA 21, 76–86 (2015)CrossRefMATH Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \({ R^N},\) Nonlinear Anal. Nonlinear Anal. RWA 21, 76–86 (2015)CrossRefMATH
27.
Zurück zum Zitat Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014)MathSciNetCrossRef Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014)MathSciNetCrossRef
28.
Zurück zum Zitat Bai, C.: Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem. Electron. J. Differ. Equ. 2013(136), 1–12 (2013)MathSciNet Bai, C.: Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem. Electron. J. Differ. Equ. 2013(136), 1–12 (2013)MathSciNet
29.
Zurück zum Zitat Sun, H., Zhang, Q.: Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique. Comput. Math. Appl. 64, 3436–3443 (2012)MathSciNetCrossRefMATH Sun, H., Zhang, Q.: Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique. Comput. Math. Appl. 64, 3436–3443 (2012)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Klimek, M., Odzijewicz, T., Malinowska, A.B.: Variational methods for the fractional Sturm–Liouville problem. J. Math. Anal. Appl. 416, 402–426 (2014)MathSciNetCrossRefMATH Klimek, M., Odzijewicz, T., Malinowska, A.B.: Variational methods for the fractional Sturm–Liouville problem. J. Math. Anal. Appl. 416, 402–426 (2014)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ntouyas, S.K., Wang, G., Zhang, L.: Positive solutions of arbitrary order nonlinear fractional differential equations with advanced arguments. Opuscu. Math. 31, 433–442 (2011)MathSciNetCrossRefMATH Ntouyas, S.K., Wang, G., Zhang, L.: Positive solutions of arbitrary order nonlinear fractional differential equations with advanced arguments. Opuscu. Math. 31, 433–442 (2011)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Guo, L., Zhang, X.: Existence of positive solutions for the singular fractional differential equations. J. Appl. Math. Comput. 44, 215–228 (2014)MathSciNetCrossRefMATH Guo, L., Zhang, X.: Existence of positive solutions for the singular fractional differential equations. J. Appl. Math. Comput. 44, 215–228 (2014)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)MathSciNetCrossRef Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)MathSciNetCrossRef
Metadaten
Titel
Infinitely many solutions for fractional differential system via variational method
verfasst von
Yulin Zhao
Haibo Chen
Qiming Zhang
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2016
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-015-0886-6

Weitere Artikel der Ausgabe 1-2/2016

Journal of Applied Mathematics and Computing 1-2/2016 Zur Ausgabe