Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2017

12.08.2016

Influence of Al–Cr co-substitution on physical properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto combustion method

verfasst von: R. C. Alange, Pankaj P. Khirade, Shankar D. Birajdar, K. M. Jadhav

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Substituted strontium hexaferrite ceramics SrCr x Al x Fe12−2x O19 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared by sol–gel auto-combustion method. X-ray diffraction (XRD) study revealed the M-type hexagonal structure of the synthesized nanoferrites with some additional peaks of Fe2O3. The lattice constants (a and c), unit cell volume (V), X-ray density (ρ x ), bulk density (ρ m ), porosity (P) and average crystallite size (t) values changes when Al–Cr ions are co-substituted in SrFe12O19 lattice, resulting in the structural variation. The surface morphology of the grains was examined by scanning electron microscopy (FESEM). Fourier transform infrared spectroscopy (FTIR) confirmed the formation of hexagonal ferrite structure. Ferromagnetic nature confirmed by recording M-H curves exhibited typical hysteresis loop at room temperature using pulse field hysteresis loop tracer technique. The large coercivity (H c ) values indicate the nanocrystalline nature of the present samples. The coercivity (H c ), saturation magnetization (M s ), remanence magnetization (M r ) and magneton number (n B ) decreases with increase in Al–Cr content x. The DC electrical resistivity studies of the prepared samples were carried out in the temperature range of 300–873 K using a standard two-probe technique. Curie temperature (Tc) i.e. ferrimagnetic to paramagnetic transition temperature for all samples was obtained from resistivity data. The Curie temperature decreases linearly as the concentration of Al–Cr content is increased. The activation energy below and above Tc was calculated. The dielectric parameters such as dielectric constant (ɛ′), dielectric loss (ɛ″) and loss tangent (tan δ) were measured in the frequency range 50 Hz–5 MHz at room temperature. All the dielectrical parameters show compositional as a function of frequency dependences. At lower frequencies, it is observed that the dielectric constant (ɛ′), dielectric loss (ɛ″) and loss tangent (tan δ) are high.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Meshram, N.K. Agrawal, B. Sinha, P. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004)CrossRef M. Meshram, N.K. Agrawal, B. Sinha, P. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004)CrossRef
2.
Zurück zum Zitat P. Tenaud, A. Morel, F. Kools, J. Le Breton, L. Lechevallier, Recent improvement of hard ferrite permanent magnets based on La–Co substitution. J. Alloy. Compd. 370, 331–334 (2004)CrossRef P. Tenaud, A. Morel, F. Kools, J. Le Breton, L. Lechevallier, Recent improvement of hard ferrite permanent magnets based on La–Co substitution. J. Alloy. Compd. 370, 331–334 (2004)CrossRef
3.
Zurück zum Zitat T. Nakamura, E. Hankui, Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite. J. Magn. Magn. Mater. 257, 158–164 (2003)CrossRef T. Nakamura, E. Hankui, Control of high-frequency permeability in polycrystalline (Ba, Co)-Z-type hexagonal ferrite. J. Magn. Magn. Mater. 257, 158–164 (2003)CrossRef
4.
Zurück zum Zitat O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media. Magn. IEEE Trans 18, 1122–1124 (1982)CrossRef O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media. Magn. IEEE Trans 18, 1122–1124 (1982)CrossRef
5.
Zurück zum Zitat S. Ram, D. Bahadur, D. Chakravorty, Crystallisation of W-type hexagonal ferrites in an oxide glass with As2O3 as nucleation catalyst. J. Magn. Magn. Mater. 67, 378–386 (1987)CrossRef S. Ram, D. Bahadur, D. Chakravorty, Crystallisation of W-type hexagonal ferrites in an oxide glass with As2O3 as nucleation catalyst. J. Magn. Magn. Mater. 67, 378–386 (1987)CrossRef
6.
Zurück zum Zitat J. Uher, W.J. Hoefer, Tunable microwave and millimeter-wave band-pass filters. Microw. Theory Tech. IEEE Trans. 39, 643–653 (1991)CrossRef J. Uher, W.J. Hoefer, Tunable microwave and millimeter-wave band-pass filters. Microw. Theory Tech. IEEE Trans. 39, 643–653 (1991)CrossRef
7.
Zurück zum Zitat R. Tiwary, S. Narayan, O. Pandey, Preparation of strontium hexaferrite magnets from celestite and blue dust by mechanochemical route. J. Min. Metall.Sect. B. 44, 91–100 (2008)CrossRef R. Tiwary, S. Narayan, O. Pandey, Preparation of strontium hexaferrite magnets from celestite and blue dust by mechanochemical route. J. Min. Metall.Sect. B. 44, 91–100 (2008)CrossRef
8.
Zurück zum Zitat T.-S. Chin, Permanent magnet films for applications in microelectromechanical systems. J. Magn. Magn. Mater. 209, 75–79 (2000)CrossRef T.-S. Chin, Permanent magnet films for applications in microelectromechanical systems. J. Magn. Magn. Mater. 209, 75–79 (2000)CrossRef
9.
Zurück zum Zitat M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)CrossRef M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)CrossRef
10.
Zurück zum Zitat M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)CrossRef M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)CrossRef
11.
Zurück zum Zitat M. Hessien, M. Rashad, K. El-Barawy, Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320, 336–343 (2008)CrossRef M. Hessien, M. Rashad, K. El-Barawy, Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320, 336–343 (2008)CrossRef
12.
Zurück zum Zitat S. Hussain, A. Maqsood, Influence of sintering time on structural, magnetic and electrical properties of Si–Ca added Sr-hexa ferrites. J. Magn. Magn. Mater. 316, 73–80 (2007)CrossRef S. Hussain, A. Maqsood, Influence of sintering time on structural, magnetic and electrical properties of Si–Ca added Sr-hexa ferrites. J. Magn. Magn. Mater. 316, 73–80 (2007)CrossRef
13.
Zurück zum Zitat F. Leccabue, R. Panizzieri, G. Salviati, G. Albanese, J.S. Llamazares, Magnetic and morphological study of BaZn2Fe16O27 hexagonal ferrite prepared by chemical coprecipitation method. J. Appl. Phys. 59, 2114–2118 (1986)CrossRef F. Leccabue, R. Panizzieri, G. Salviati, G. Albanese, J.S. Llamazares, Magnetic and morphological study of BaZn2Fe16O27 hexagonal ferrite prepared by chemical coprecipitation method. J. Appl. Phys. 59, 2114–2118 (1986)CrossRef
14.
Zurück zum Zitat E. Kiani, A.S. Rozatian, M.H. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by a low-temperature solid-state reaction method. J. Mater. Sci.: Mater. Electron. 24, 2485–2492 (2013) E. Kiani, A.S. Rozatian, M.H. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by a low-temperature solid-state reaction method. J. Mater. Sci.: Mater. Electron. 24, 2485–2492 (2013)
15.
Zurück zum Zitat R. Pullar, A. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol–gel precursor, without formation of the α-BaFe 2 O 4 intermediate phase. Mater. Lett. 57, 537–542 (2002)CrossRef R. Pullar, A. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol–gel precursor, without formation of the α-BaFe 2 O 4 intermediate phase. Mater. Lett. 57, 537–542 (2002)CrossRef
16.
Zurück zum Zitat H.-I. Hsiang, R.-Q. Yao, Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)CrossRef H.-I. Hsiang, R.-Q. Yao, Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)CrossRef
17.
Zurück zum Zitat A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe 12 O 19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater. 332, 186–191 (2013)CrossRef A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe 12 O 19 ferrites: hydrothermal synthesis and their sintering properties. J. Magn. Magn. Mater. 332, 186–191 (2013)CrossRef
18.
Zurück zum Zitat P. Xu, X. Han, M. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. C 111, 5866–5870 (2007)CrossRef P. Xu, X. Han, M. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. C 111, 5866–5870 (2007)CrossRef
19.
Zurück zum Zitat Z. Yue, J. Zhou, L. Li, H. Zhang, Z. Gui, Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000)CrossRef Z. Yue, J. Zhou, L. Li, H. Zhang, Z. Gui, Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000)CrossRef
20.
Zurück zum Zitat L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90, 33–72 (1990)CrossRef L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90, 33–72 (1990)CrossRef
21.
Zurück zum Zitat Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe 9.6 Co 0.8 Ti 0.8 M 0.8 O 19 particles. Mater. Chem. Phys. 64, 256–259 (2000)CrossRef Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe 9.6 Co 0.8 Ti 0.8 M 0.8 O 19 particles. Mater. Chem. Phys. 64, 256–259 (2000)CrossRef
22.
Zurück zum Zitat Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles. J. Magn. Magn. Mater. 294, 281–286 (2005)CrossRef Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles. J. Magn. Magn. Mater. 294, 281–286 (2005)CrossRef
23.
Zurück zum Zitat P. Röschmann, M. Lemke, W. Tolksdorf, F. Welz, Anisotropy fields and FMR linewidth in single-crystal Al, Ga and Sc substituted hexagonal ferrites with M structure. Mater. Res Bull. 19, 385–392 (1984)CrossRef P. Röschmann, M. Lemke, W. Tolksdorf, F. Welz, Anisotropy fields and FMR linewidth in single-crystal Al, Ga and Sc substituted hexagonal ferrites with M structure. Mater. Res Bull. 19, 385–392 (1984)CrossRef
24.
Zurück zum Zitat Z. Wang, Z. Zhou, W. Zhang, H. Qian, M. Jin, Preparation and magnetic properties of Nd3+ , Al3+ , Ca2+ substituted M-type strontium hexaferrites. J. Supercond. Novel Magn. 26, 3501–3506 (2013)CrossRef Z. Wang, Z. Zhou, W. Zhang, H. Qian, M. Jin, Preparation and magnetic properties of Nd3+ , Al3+ , Ca2+ substituted M-type strontium hexaferrites. J. Supercond. Novel Magn. 26, 3501–3506 (2013)CrossRef
25.
Zurück zum Zitat A. Sharbati, J.M.V. Khani, Effect of Ho3+ substitution on magnetic and microwave absorption properties of Sr (ZnZr) 0.5 Fe12O19 hexagonal ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 3629–3633 (2013) A. Sharbati, J.M.V. Khani, Effect of Ho3+ substitution on magnetic and microwave absorption properties of Sr (ZnZr) 0.5 Fe12O19 hexagonal ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 3629–3633 (2013)
26.
Zurück zum Zitat S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Magnetic properties of Ni–Co doped barium strontium hexaferrite. J. Mater. Sci.: Mater. Electron. 23, 1575–1579 (2012) S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Magnetic properties of Ni–Co doped barium strontium hexaferrite. J. Mater. Sci.: Mater. Electron. 23, 1575–1579 (2012)
27.
Zurück zum Zitat G. Albanese, M. Carbucicchio, A. Deriu, Temperature dependence of the sublattice magnetizations in Al-and Ga-substituted M-type hexagonal ferrites. Phys. Status Solidi (a) 23, 351–358 (1974)CrossRef G. Albanese, M. Carbucicchio, A. Deriu, Temperature dependence of the sublattice magnetizations in Al-and Ga-substituted M-type hexagonal ferrites. Phys. Status Solidi (a) 23, 351–358 (1974)CrossRef
28.
Zurück zum Zitat A. Kamzin, L. Ol’khovik, Surface magnetism of Al-substituted Sr-M-type hexagonal ferrites. Phys. Solid State 41, 1658–1664 (1999)CrossRef A. Kamzin, L. Ol’khovik, Surface magnetism of Al-substituted Sr-M-type hexagonal ferrites. Phys. Solid State 41, 1658–1664 (1999)CrossRef
29.
Zurück zum Zitat S. Ounnunkad, P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process. J. Magn. Magn. Mater. 301, 292–300 (2006)CrossRef S. Ounnunkad, P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate–citrate gel-autocombustion process. J. Magn. Magn. Mater. 301, 292–300 (2006)CrossRef
30.
Zurück zum Zitat M.N. Ashiq, M. Javed, I. Iqbal, H. Gul, Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 323, 259–263 (2011)CrossRef M.N. Ashiq, M. Javed, I. Iqbal, H. Gul, Effect of Al–Cr doping on the structural, magnetic and dielectric properties of strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 323, 259–263 (2011)CrossRef
31.
Zurück zum Zitat R. Alange, P.P. Khirade, S.D. Birajdar, A.V. Humbe, K. Jadhav, Structural, magnetic and dielectrical properties of Al–Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016)CrossRef R. Alange, P.P. Khirade, S.D. Birajdar, A.V. Humbe, K. Jadhav, Structural, magnetic and dielectrical properties of Al–Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016)CrossRef
32.
Zurück zum Zitat X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, M. Font-Altaba, Crystal structure of strontium hexaferrite SrFe12O19. J. Solid State Chem. 72, 218–224 (1988)CrossRef X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, M. Font-Altaba, Crystal structure of strontium hexaferrite SrFe12O19. J. Solid State Chem. 72, 218–224 (1988)CrossRef
33.
Zurück zum Zitat A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21, 1951–1955 (2001)CrossRef A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21, 1951–1955 (2001)CrossRef
34.
Zurück zum Zitat L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik A Hadrons Nuclei 5, 17–26 (1921) L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik A Hadrons Nuclei 5, 17–26 (1921)
35.
Zurück zum Zitat C. Fang, F. Kools, R. Metselaar, R. De Groot, Magnetic and electronic properties of strontium hexaferrite SrFe12O19 from first-principles calculations. J. Phys.: Condens. Matter 15, 6229 (2003) C. Fang, F. Kools, R. Metselaar, R. De Groot, Magnetic and electronic properties of strontium hexaferrite SrFe12O19 from first-principles calculations. J. Phys.: Condens. Matter 15, 6229 (2003)
36.
Zurück zum Zitat V.N. Dhage, M. Mane, A. Keche, C. Birajdar, K. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys B 406, 789–793 (2011)CrossRef V.N. Dhage, M. Mane, A. Keche, C. Birajdar, K. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys B 406, 789–793 (2011)CrossRef
37.
Zurück zum Zitat F. Khademi, A. Poorbafrani, P. Kameli, H. Salamati, Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525–531 (2012)CrossRef F. Khademi, A. Poorbafrani, P. Kameli, H. Salamati, Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525–531 (2012)CrossRef
38.
Zurück zum Zitat A. Thakur, R. Singh, P. Barman, Synthesis and characterizations of Nd 3+ doped SrFe 12 O 19 nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013)CrossRef A. Thakur, R. Singh, P. Barman, Synthesis and characterizations of Nd 3+ doped SrFe 12 O 19 nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013)CrossRef
39.
Zurück zum Zitat A. Das, A. Roychowdhury, S. Pati, S. Bandyopadhyay, D. Das, Structural, magnetic and hyperfine properties of single-phase SrFe12O19 nanoparticles prepared by a sol–gel route. Phys. Scr. 90, 025802 (2015)CrossRef A. Das, A. Roychowdhury, S. Pati, S. Bandyopadhyay, D. Das, Structural, magnetic and hyperfine properties of single-phase SrFe12O19 nanoparticles prepared by a sol–gel route. Phys. Scr. 90, 025802 (2015)CrossRef
40.
Zurück zum Zitat I. Auwal, H. Güngüneş, S. Güner, S.E. Shirsath, M. Sertkol, A. Baykal, Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe 12–3x O 19 (0.0 ≤ x ≤ 0.33) hexaferrites. Mater. Res. Bull. 80, 263–272 (2016)CrossRef I. Auwal, H. Güngüneş, S. Güner, S.E. Shirsath, M. Sertkol, A. Baykal, Structural, magneto-optical properties and cation distribution of SrBi x La x Y x Fe 12–3x O 19 (0.0 ≤ x ≤ 0.33) hexaferrites. Mater. Res. Bull. 80, 263–272 (2016)CrossRef
41.
Zurück zum Zitat R. Turton, The physics of solids (Oxford University Press, Oxford, 2000) R. Turton, The physics of solids (Oxford University Press, Oxford, 2000)
42.
Zurück zum Zitat M.N. Ashiq, M.F. Ehsan, M.J. Iqbal, M. Najam-ul-Haq, Role of Zr–Co substitution at iron site on structural, magnetic and electrical properties of Sr-hexaferrites nanomaterials synthesized by the sol–gel combustion method. J. Magn. Magn. Mater. 332, 93–97 (2013)CrossRef M.N. Ashiq, M.F. Ehsan, M.J. Iqbal, M. Najam-ul-Haq, Role of Zr–Co substitution at iron site on structural, magnetic and electrical properties of Sr-hexaferrites nanomaterials synthesized by the sol–gel combustion method. J. Magn. Magn. Mater. 332, 93–97 (2013)CrossRef
43.
Zurück zum Zitat H. Luo, B. Rai, S. Mishra, V. Nguyen, J. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324, 2602–2608 (2012)CrossRef H. Luo, B. Rai, S. Mishra, V. Nguyen, J. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324, 2602–2608 (2012)CrossRef
44.
Zurück zum Zitat A.A. Nourbakhsh, M. Noorbakhsh, M. Nourbakhsh, M. Shaygan, K.J. Mackenzie, The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics. J. Mater. Sci.: Mater. Electron. 22, 1297–1302 (2011) A.A. Nourbakhsh, M. Noorbakhsh, M. Nourbakhsh, M. Shaygan, K.J. Mackenzie, The effect of nano sized SrFe12O19 additions on the magnetic properties of chromium-doped strontium-hexaferrite ceramics. J. Mater. Sci.: Mater. Electron. 22, 1297–1302 (2011)
45.
Zurück zum Zitat A.V. Raut, D. Kurmude, D. Shengule, K. Jadhav, Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles. Mater. Res. Bull. 63, 123–128 (2015)CrossRef A.V. Raut, D. Kurmude, D. Shengule, K. Jadhav, Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles. Mater. Res. Bull. 63, 123–128 (2015)CrossRef
46.
Zurück zum Zitat P.P. Khirade, S.D. Birajdar, A.V. Humbe, K. Jadhav, Structural, electrical and dielectrical property investigations of Fe-doped BaZrO3 nanoceramics. J. Electron. Mater. 45, 3227–3235 (2016)CrossRef P.P. Khirade, S.D. Birajdar, A.V. Humbe, K. Jadhav, Structural, electrical and dielectrical property investigations of Fe-doped BaZrO3 nanoceramics. J. Electron. Mater. 45, 3227–3235 (2016)CrossRef
47.
Zurück zum Zitat P.P. Khirade, S.D. Birajdar, A. Raut, K.M. Jadhav, Effect of Fe–substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method, J. Electroceram. (2016). doi:10.1007/s10832-016-0044-z P.P. Khirade, S.D. Birajdar, A. Raut, K.M. Jadhav, Effect of Fe–substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method, J. Electroceram. (2016). doi:10.​1007/​s10832-016-0044-z
48.
Zurück zum Zitat G. Sawatzky, J. Coey, A. Morrish, Mössbauer study of electron hopping in the octahedral sites of Fe3O4. J. Appl. Phys. 40, 1402–1403 (1969)CrossRef G. Sawatzky, J. Coey, A. Morrish, Mössbauer study of electron hopping in the octahedral sites of Fe3O4. J. Appl. Phys. 40, 1402–1403 (1969)CrossRef
49.
Zurück zum Zitat M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe 12 O 19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010)CrossRef M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe 12 O 19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010)CrossRef
50.
Zurück zum Zitat Z. Zi, Y. Sun, X. Zhu, C. Hao, X. Luo, Z. Yang, J. Dai, W. Song, Electrical transport and magnetic properties in La 0.7 Sr 0.3 MnO 3 and SrFe 12 O 19 composite system. J. Alloy. Compd. 477, 414–419 (2009)CrossRef Z. Zi, Y. Sun, X. Zhu, C. Hao, X. Luo, Z. Yang, J. Dai, W. Song, Electrical transport and magnetic properties in La 0.7 Sr 0.3 MnO 3 and SrFe 12 O 19 composite system. J. Alloy. Compd. 477, 414–419 (2009)CrossRef
51.
Zurück zum Zitat V. Vinayak, P.P. Khirade, S.D. Birajdar, R. Alange, K. Jadhav, Electrical and dielectrical properties of low-temperature-synthesized nanocrystalline Mg2+ -substituted cobalt spinel ferrite. J. Supercond. Novel Magn. 28, 3351–3356 (2015)CrossRef V. Vinayak, P.P. Khirade, S.D. Birajdar, R. Alange, K. Jadhav, Electrical and dielectrical properties of low-temperature-synthesized nanocrystalline Mg2+ -substituted cobalt spinel ferrite. J. Supercond. Novel Magn. 28, 3351–3356 (2015)CrossRef
52.
Zurück zum Zitat M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D Appl. Phys. 34, 2935 (2001)CrossRef M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D Appl. Phys. 34, 2935 (2001)CrossRef
53.
Zurück zum Zitat C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)CrossRef C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)CrossRef
54.
Zurück zum Zitat B.H. Bhat, B. Want, Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5389-1 B.H. Bhat, B. Want, Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite, J. Mater. Sci.: Mater. Electron. (2016). doi:10.​1007/​s10854-016-5389-1
55.
Zurück zum Zitat A. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Structure and electrical properties of Co 0.5 Cd x Fe 2.5 − x O 4 ferrites. J. Alloy. Compd. 464, 361–369 (2008)CrossRef A. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Structure and electrical properties of Co 0.5 Cd x Fe 2.5 − x O 4 ferrites. J. Alloy. Compd. 464, 361–369 (2008)CrossRef
56.
Zurück zum Zitat M.J. Iqbal, S. Farooq, Extraordinary role of Ce–Ni elements on the electrical and magnetic properties of Sr–Ba M-type hexaferrites. Mater. Res. Bull. 44, 2050–2055 (2009)CrossRef M.J. Iqbal, S. Farooq, Extraordinary role of Ce–Ni elements on the electrical and magnetic properties of Sr–Ba M-type hexaferrites. Mater. Res. Bull. 44, 2050–2055 (2009)CrossRef
57.
Zurück zum Zitat N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)CrossRef N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr. Appl. Phys. 11, 783–789 (2011)CrossRef
58.
Zurück zum Zitat S. Sanghi, A. Agarwal, N. Ahlawat, Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites. J. Appl. Phys. 112, 014110 (2012)CrossRef S. Sanghi, A. Agarwal, N. Ahlawat, Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites. J. Appl. Phys. 112, 014110 (2012)CrossRef
59.
Zurück zum Zitat I. Ali, M. Islam, M. Awan, M. Ahmad, Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104–2114 (2013)CrossRef I. Ali, M. Islam, M. Awan, M. Ahmad, Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104–2114 (2013)CrossRef
60.
Zurück zum Zitat A. Shaikh, S. Bellad, B. Chougule, Temperature and frequency-dependent dielectric properties of Zn substituted Li–Mg ferrites. J. Magn. Magn. Mater. 195, 384–390 (1999)CrossRef A. Shaikh, S. Bellad, B. Chougule, Temperature and frequency-dependent dielectric properties of Zn substituted Li–Mg ferrites. J. Magn. Magn. Mater. 195, 384–390 (1999)CrossRef
61.
Zurück zum Zitat K. Praveena, M. Bououdina, M.P. Reddy, S. Srinath, R. Sandhya, S. Katlakunta, Structural, magnetic, and electrical properties of microwave-sintered Cr3+ -doped Sr hexaferrites. J. Electron. Mater. 44, 524–531 (2015)CrossRef K. Praveena, M. Bououdina, M.P. Reddy, S. Srinath, R. Sandhya, S. Katlakunta, Structural, magnetic, and electrical properties of microwave-sintered Cr3+ -doped Sr hexaferrites. J. Electron. Mater. 44, 524–531 (2015)CrossRef
Metadaten
Titel
Influence of Al–Cr co-substitution on physical properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto combustion method
verfasst von
R. C. Alange
Pankaj P. Khirade
Shankar D. Birajdar
K. M. Jadhav
Publikationsdatum
12.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5537-7

Weitere Artikel der Ausgabe 1/2017

Journal of Materials Science: Materials in Electronics 1/2017 Zur Ausgabe

Neuer Inhalt