Skip to main content
Erschienen in: Journal of Electronic Materials 4/2021

02.02.2021 | Original Research Article

Influence of As+ Ion Implantation on Properties of MBE HgCdTe Near-Surface Layer Characterized by Metal–Insulator–Semiconductor Techniques

verfasst von: A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, G. Y. Sidorov, M. V. Yakushev, D. V. Marin

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of As+ ion implantation on the electrical properties of the near-surface layer of n-HgCdTe films grown by molecular beam epitaxy (MBE) on Si (310) substrates was experimentally studied. A specific feature of MBE n-Hg0.78Cd0.22Te films is the presence of near-surface graded-gap layers with a high CdTe content, formed during epitaxial growth. The properties of as-grown films and films after As+ ion implantation with ion energy of 200 keV and fluence of 1014 cm−2 were studied. Post-implantation activation annealing was not performed. Test metal–insulator–semiconductor (MIS) structures were created based on as-grown and as-implanted samples by plasma-enhanced atomic layer deposition of Al2O3 insulator films. The admittance of the fabricated MIS structures was measured over a wide range of frequencies and temperatures. When determining the parameters of MIS structures, we used techniques that take into account the presence of near-surface graded-gap layers and series resistance of the HgCdTe film bulk, as well as the high density of slow surface states. It was found that, in as-implanted samples, the donor center concentration in the near-surface layer exceeds 1017 cm−3 and increases with distance from the HgCdTe-Al2O3 interface (at least up to 90 nm). After implantation, the conductivity of MBE HgCdTe film bulk increases markedly. It was shown that, for as-implanted samples, the generation rate of minority charge carriers in the MBE HgCdTe surface layer is significantly reduced, which indicates the appearance of a low defect layer with a thickness of at least 90 nm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Rogalski, Infrared and Terahertz Detectors, 3rd edn (Boca Raton: CRC, 2019).CrossRef A. Rogalski, Infrared and Terahertz Detectors, 3rd edn (Boca Raton: CRC, 2019).CrossRef
2.
Zurück zum Zitat W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).CrossRef W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev. 2, 041303 (2015).CrossRef
3.
Zurück zum Zitat T.J. De Lyon, J.E. Jensen, M.D., Gorwitz, C.A. Cockrum, S.M. Johnson, and G..M. Venzor, J. Electron. Mater. 28, 705 (1999). T.J. De Lyon, J.E. Jensen, M.D., Gorwitz, C.A. Cockrum, S.M. Johnson, and G..M. Venzor, J. Electron. Mater. 28, 705 (1999).
4.
Zurück zum Zitat D.D. Edwall, J.S. Chen, J. Bajaj, and E.R. Gertner, Semicond. Sci. Technol. 5, S221 (1990).CrossRef D.D. Edwall, J.S. Chen, J. Bajaj, and E.R. Gertner, Semicond. Sci. Technol. 5, S221 (1990).CrossRef
6.
Zurück zum Zitat L. Mollard, G. Bourgeois, C. Lobre, S. Gout, S. Viollet-Bosson, N. Baier, G. Destefanis, O. Gravrand, J.P. Barnes, F. Milesi, A. Kerlain, L. Rubaldo, and A. Manissadjian, J. Electron. Mater. 43, 802 (2014).CrossRef L. Mollard, G. Bourgeois, C. Lobre, S. Gout, S. Viollet-Bosson, N. Baier, G. Destefanis, O. Gravrand, J.P. Barnes, F. Milesi, A. Kerlain, L. Rubaldo, and A. Manissadjian, J. Electron. Mater. 43, 802 (2014).CrossRef
7.
Zurück zum Zitat A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016).CrossRef A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016).CrossRef
8.
Zurück zum Zitat W. Qiu, W. Hu, C. Lin, X. Chen, and W. Lu, Opt. Lett. 41, 828 (2016).CrossRef W. Qiu, W. Hu, C. Lin, X. Chen, and W. Lu, Opt. Lett. 41, 828 (2016).CrossRef
9.
Zurück zum Zitat L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes, C. Pautet, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).CrossRef L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes, C. Pautet, and P. Fougères, J. Electron. Mater. 38, 1805 (2009).CrossRef
10.
Zurück zum Zitat L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen, J. Ratusnik, J.C. Robinson, and G. Bostrup, Appl. Phys. Lett. 50, 1586 (1987).CrossRef L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen, J. Ratusnik, J.C. Robinson, and G. Bostrup, Appl. Phys. Lett. 50, 1586 (1987).CrossRef
11.
Zurück zum Zitat L.O. Bubulac, and C.R. Viswanathan, J. Cryst. Growth 123, 555 (1992).CrossRef L.O. Bubulac, and C.R. Viswanathan, J. Cryst. Growth 123, 555 (1992).CrossRef
12.
Zurück zum Zitat I.I. Izhnin, A.V. Voitsekhovsky, A.G. Korotaev, O.I. Fitsych, A.Y. Bonchyk, H.V. Savytskyy, K.D. Mynbaev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and R. Jakiela, Infrared Phys. Technol. 81, 52 (2017).CrossRef I.I. Izhnin, A.V. Voitsekhovsky, A.G. Korotaev, O.I. Fitsych, A.Y. Bonchyk, H.V. Savytskyy, K.D. Mynbaev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and R. Jakiela, Infrared Phys. Technol. 81, 52 (2017).CrossRef
13.
Zurück zum Zitat C. Lobre, D. Jalabert, I. Vickridge, E. Briand, D. Benzeggouta, L. Mollard, P. H. Jouneau, and P. Ballet, Nucl. Instrum. Methods Phys. Res. Sect. B 313, 76 (2013). C. Lobre, D. Jalabert, I. Vickridge, E. Briand, D. Benzeggouta, L. Mollard, P. H. Jouneau, and P. Ballet, Nucl. Instrum. Methods Phys. Res. Sect. B 313, 76 (2013).
14.
Zurück zum Zitat C. Lobre, P.H. Jouneau, L. Mollard, and P. Ballet, J. Electron. Mater. 43, 2908 (2014).CrossRef C. Lobre, P.H. Jouneau, L. Mollard, and P. Ballet, J. Electron. Mater. 43, 2908 (2014).CrossRef
15.
Zurück zum Zitat A.G.. Korotaev, I.I. Izhnin, K.D. Mynbaev, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky. N.N. Mikhailov, M.V. Yakushev, O.Yu. Bonchyk, H.V. Savytsky. Z. Swiatek, J. Morgiel, and M.V. Yakushev, Surf. Coat. Technol. 393, 125721 (2020). A.G.. Korotaev, I.I. Izhnin, K.D. Mynbaev, A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky. N.N. Mikhailov, M.V. Yakushev, O.Yu. Bonchyk, H.V. Savytsky. Z. Swiatek, J. Morgiel, and M.V. Yakushev, Surf. Coat. Technol. 393, 125721 (2020).
16.
Zurück zum Zitat O.Y. Bonchyk, H.V. Savytskyy, Z. Swiatek, Y. Morgiel, I.I. Izhnin, A.V. Voitsekhovskii, A.G. Korotaev, K.D. Mynbaev, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, and M.V. Yakushev, Appl. Nanosci. 9, 725 (2019).CrossRef O.Y. Bonchyk, H.V. Savytskyy, Z. Swiatek, Y. Morgiel, I.I. Izhnin, A.V. Voitsekhovskii, A.G. Korotaev, K.D. Mynbaev, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, and M.V. Yakushev, Appl. Nanosci. 9, 725 (2019).CrossRef
17.
Zurück zum Zitat C. Shi, C. Lin, Y. Wei, and L. Chen, Proc. SPIE 10177, 101771C (2017).CrossRef C. Shi, C. Lin, Y. Wei, and L. Chen, Proc. SPIE 10177, 101771C (2017).CrossRef
18.
19.
Zurück zum Zitat H.R. Vydyanath, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. – Process., Meas., Phenom 9, 1716 (1991). H.R. Vydyanath, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. – Process., Meas., Phenom 9, 1716 (1991).
20.
21.
Zurück zum Zitat S.A. Dvoretsky, V.S. Varavin, N.N. Mikhailov, Y.G. Sidorov, T.I. Zakharyash, V.V. Vasiliev, V.N. Ovsyuk, G.V. Chekanova, M.S. Nikitin, IYu. Lartsev, and A.L. Aseev, Proc. SPIE 5964, 9640A (2005).CrossRef S.A. Dvoretsky, V.S. Varavin, N.N. Mikhailov, Y.G. Sidorov, T.I. Zakharyash, V.V. Vasiliev, V.N. Ovsyuk, G.V. Chekanova, M.S. Nikitin, IYu. Lartsev, and A.L. Aseev, Proc. SPIE 5964, 9640A (2005).CrossRef
22.
Zurück zum Zitat E.H. Nicollian, and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982). E.H. Nicollian, and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).
23.
Zurück zum Zitat S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, and A. Souifi, J. Alloys Compd. 713, 194 (2017).CrossRef S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, and A. Souifi, J. Alloys Compd. 713, 194 (2017).CrossRef
24.
Zurück zum Zitat A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N., Mikhailov, G.Yu. Sidorov, M.V. Yakushev, and D.V. Marin, J. Electron. Mater. 49, 3202 (2020). A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N., Mikhailov, G.Yu. Sidorov, M.V. Yakushev, and D.V. Marin, J. Electron. Mater. 49, 3202 (2020).
26.
Zurück zum Zitat A.G. Korotaev, A.V. Voitsekhovskii, I.I. Izhnin, K.D. Mynbaev, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and GYu. Sidorov, Surf. Coat. Technol. 392, 125760 (2020).CrossRef A.G. Korotaev, A.V. Voitsekhovskii, I.I. Izhnin, K.D. Mynbaev, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and GYu. Sidorov, Surf. Coat. Technol. 392, 125760 (2020).CrossRef
27.
Zurück zum Zitat A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Electron. Mater. 47, 2694 (2018).CrossRef A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Electron. Mater. 47, 2694 (2018).CrossRef
28.
Zurück zum Zitat A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Phys. Chem. Sol. 102, 42 (2017).CrossRef A.V. Voitsekhovskii, S.N. Nesmelov, and S.M. Dzyadukh, J. Phys. Chem. Sol. 102, 42 (2017).CrossRef
29.
Zurück zum Zitat A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, Vacuum 158, 136 (2018).CrossRef A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, Vacuum 158, 136 (2018).CrossRef
30.
Zurück zum Zitat Y.G. Sidorov, S.A. Dvoretskii, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, and I.V. Sabinina, Semiconductors 35, 1045 (2001).CrossRef Y.G. Sidorov, S.A. Dvoretskii, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, and I.V. Sabinina, Semiconductors 35, 1045 (2001).CrossRef
31.
Zurück zum Zitat R. Fu, J. Pattison, A. Chen, and O. Nayfeh, Proc. SPIE 8353, 83532I (2012).CrossRef R. Fu, J. Pattison, A. Chen, and O. Nayfeh, Proc. SPIE 8353, 83532I (2012).CrossRef
32.
Zurück zum Zitat P. Zhang, Z.-H. Ye, C.-H. Sun, Y.-Y. Chen, T.-N. Zhang, X. Chen, C. Lin, R.-J. Ding, and L. He, J. Electron. Mater. 45, 4716 (2016).CrossRef P. Zhang, Z.-H. Ye, C.-H. Sun, Y.-Y. Chen, T.-N. Zhang, X. Chen, C. Lin, R.-J. Ding, and L. He, J. Electron. Mater. 45, 4716 (2016).CrossRef
33.
Zurück zum Zitat E.R. Zakirov, V.G. Kesler, G.Y. Sidorov, I.P. Prosvirin, A.K., Gutakovsky, and V.I. Vdovin, Semicond. Sci. Technol. 34, 065007 (2019). E.R. Zakirov, V.G. Kesler, G.Y. Sidorov, I.P. Prosvirin, A.K., Gutakovsky, and V.I. Vdovin, Semicond. Sci. Technol. 34, 065007 (2019).
34.
Zurück zum Zitat E.R. Zakirov, V.G. Kesler, GYu. Sidorov, and A.P. Kovchavtsev, Semicond. Sci. Technol. 35, 025019 (2020).CrossRef E.R. Zakirov, V.G. Kesler, GYu. Sidorov, and A.P. Kovchavtsev, Semicond. Sci. Technol. 35, 025019 (2020).CrossRef
35.
Zurück zum Zitat A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 52, 1003 (2009).CrossRef A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 52, 1003 (2009).CrossRef
36.
Zurück zum Zitat A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Opto-Electron. Rev. 22, 236 (2014). A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Opto-Electron. Rev. 22, 236 (2014).
37.
Zurück zum Zitat A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 48, 584 (2005).CrossRef A.V. Voitsekhovkii, S.N. Nesmelov, and S.M. Dzyadukh, Russ. Phys. J. 48, 584 (2005).CrossRef
38.
Zurück zum Zitat A.V. Voitsekhovkii, N.A. Kulchitsky, S.N. Nesmelov, and S.M. Dzyadukh, J. Comm. Technol. Electron. 63, 1112 (2018).CrossRef A.V. Voitsekhovkii, N.A. Kulchitsky, S.N. Nesmelov, and S.M. Dzyadukh, J. Comm. Technol. Electron. 63, 1112 (2018).CrossRef
39.
Zurück zum Zitat A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasilev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, , Phys. Stat. Sol. (c) 13, 647 (2016).CrossRef A.V. Voitsekhovskii, S.N. Nesmelov, S.M. Dzyadukh, V.V. Vasilev, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, and G.Y. Sidorov, , Phys. Stat. Sol. (c) 13, 647 (2016).CrossRef
40.
Zurück zum Zitat A.P. Kovchavtsev, G.Y. Sidorov, A.E. Nastovjak, A.V. Tsarenko, I.V. Sabinina, and V.V. Vasilyev, J. Appl. Phys. 121, 125304 (2017).CrossRef A.P. Kovchavtsev, G.Y. Sidorov, A.E. Nastovjak, A.V. Tsarenko, I.V. Sabinina, and V.V. Vasilyev, J. Appl. Phys. 121, 125304 (2017).CrossRef
41.
Zurück zum Zitat S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, 3rd edn (New Jersey: Wiley, 2007). S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, 3rd edn (New Jersey: Wiley, 2007).
42.
Zurück zum Zitat W. Van Gelder, and E.H. Nicollian, J. Electrochem. Soc. 118, 138 (1971).CrossRef W. Van Gelder, and E.H. Nicollian, J. Electrochem. Soc. 118, 138 (1971).CrossRef
43.
44.
Zurück zum Zitat I.I. Izhnin, I.I. Syvorotka, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, N.N. Mikhailov, V.G. Remesnik, M.V. Yakushev, K.D. Mynbaev, A.V. Voitsekhovsky, and A.G. Korotaev, Semicond. Sci. Technol. 34, 035009 (2019).CrossRef I.I. Izhnin, I.I. Syvorotka, O.I. Fitsych, V.S. Varavin, S.A. Dvoretsky, D.V. Marin, N.N. Mikhailov, V.G. Remesnik, M.V. Yakushev, K.D. Mynbaev, A.V. Voitsekhovsky, and A.G. Korotaev, Semicond. Sci. Technol. 34, 035009 (2019).CrossRef
45.
Zurück zum Zitat G.A. Umana-Membreno, H. Kala, J. Antoszewski, Z.H. Ye, W.D. Hu, R.J. Ding, X.S. Chen, W. Lu, L. He, J.M. Dell, and L. Faraone, J. Electron. Mater. 42, 3108 (2013).CrossRef G.A. Umana-Membreno, H. Kala, J. Antoszewski, Z.H. Ye, W.D. Hu, R.J. Ding, X.S. Chen, W. Lu, L. He, J.M. Dell, and L. Faraone, J. Electron. Mater. 42, 3108 (2013).CrossRef
46.
Metadaten
Titel
Influence of As+ Ion Implantation on Properties of MBE HgCdTe Near-Surface Layer Characterized by Metal–Insulator–Semiconductor Techniques
verfasst von
A. V. Voitsekhovskii
S. N. Nesmelov
S. M. Dzyadukh
V. S. Varavin
S. A. Dvoretsky
N. N. Mikhailov
G. Y. Sidorov
M. V. Yakushev
D. V. Marin
Publikationsdatum
02.02.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08752-8

Weitere Artikel der Ausgabe 4/2021

Journal of Electronic Materials 4/2021 Zur Ausgabe

Neuer Inhalt