Skip to main content
Erschienen in: Journal of Electronic Materials 3/2021

01.01.2021 | Original Research Article

Influence of Ba Doping on the Electrical Behaviour of La0.9Sr0.1Al0.9Mg0.1O3−δ System for a Solid Electrolyte

verfasst von: Onkar Nath Verma, Saurabh Singh, Vivek K. Singh, M. Najim, Raghvendra Pandey, Prabhakar Singh

Erschienen in: Journal of Electronic Materials | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Barium (Ba)-incorporated strontium and magnesium-doped lanthanum aluminate, La0.9−xSr0.1BaxAl0.9Mg0.1O3−δ (LSBAM, with x = 0.00, 0.01 and 0.03) designated as LSBAM 00, LSBAM 01 and LSBAM 03, respectively, were effectively synthesized via citrate–nitrate-based auto-combustion method taking citric acid (C6H8O7·H2O) as a fuel agent. The electrical properties of the synthesized compositions were investigated as electrolyte for electrochemical applications. The powders were also characterized by simultaneous differential thermal analysis and thermogravimetric analysis to confirm the reaction temperature of the final product from the precursor. The X-ray Rietveld refinement patterns showed the rhombohedral structure with space group R-3c of the investigated systems. The scanning electron microscope images depicted fairly dense micrographs that are essential for a good electrolyte. The crystallite sizes were estimated to be in the range of 40 nm to 55 nm. The effect of doping has been investigated for the further improvement of ionic conducting efficiency of the systems. The electrical conductivity of the La0.9−xSr0.1BaxAl0.9Mg0.1O3−δ system has been measured at different temperatures between 400°C and 700°C to reveal the contribution of grains, grain boundaries and electrode specimen interface response to the total conductivity. The values of activation energy (Ea) for total conductivity suggest ionic conduction in the system that may primarily be due to the diffusion of O2− ions via oxygen vacancy sites. The conductivity for all compositions was found to increase with increasing temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Song, Y. Yang, Y.L. Zhao, M. Che, L. Zhu, X.Q. Gu, and Y.H. Qiang, Mater. Sci. Eng. B 174, 18 (2017).CrossRef J. Song, Y. Yang, Y.L. Zhao, M. Che, L. Zhu, X.Q. Gu, and Y.H. Qiang, Mater. Sci. Eng. B 174, 18 (2017).CrossRef
2.
Zurück zum Zitat Y.H. Song, S.H. Choi, J.S. Yoo, and B.K. Kang, Chem. Eng. J. 313, 465 (2017).CrossRef Y.H. Song, S.H. Choi, J.S. Yoo, and B.K. Kang, Chem. Eng. J. 313, 465 (2017).CrossRef
3.
4.
Zurück zum Zitat R.W. Simon, C.E. Platt, A.E. Lee, G.S. Lee, K.P. Daly, M.S. Wire, J.A. Luine, and M. Urbanik, Appl. Phys. Lett. 53, 2677 (1988).CrossRef R.W. Simon, C.E. Platt, A.E. Lee, G.S. Lee, K.P. Daly, M.S. Wire, J.A. Luine, and M. Urbanik, Appl. Phys. Lett. 53, 2677 (1988).CrossRef
5.
Zurück zum Zitat R. Spinicci, P. Marini, S.D. Rossi, M. Faticanti, and P. Porta, J. Mol. Catal. A Chem. 176, 253 (2001).CrossRef R. Spinicci, P. Marini, S.D. Rossi, M. Faticanti, and P. Porta, J. Mol. Catal. A Chem. 176, 253 (2001).CrossRef
6.
7.
Zurück zum Zitat A.B. Stambouli and E. Traversa, Renew. Sustain. Energy Rev. 6, 433 (2002).CrossRef A.B. Stambouli and E. Traversa, Renew. Sustain. Energy Rev. 6, 433 (2002).CrossRef
8.
Zurück zum Zitat M. Lorenzo, C.A.J. Fisher, and M.S. Islam, Chem. Soc. Rev. 39, 4370 (2010).CrossRef M. Lorenzo, C.A.J. Fisher, and M.S. Islam, Chem. Soc. Rev. 39, 4370 (2010).CrossRef
10.
Zurück zum Zitat T. Ishihara, M. Hideaki, and T. Yusaku, J. Am. Chem. Soc. 116, 3801 (1994).CrossRef T. Ishihara, M. Hideaki, and T. Yusaku, J. Am. Chem. Soc. 116, 3801 (1994).CrossRef
11.
Zurück zum Zitat M. Feng and J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31, 663 (1994). M. Feng and J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31, 663 (1994).
13.
Zurück zum Zitat I. Sreedhar, B. Agarwal, P. Goyal, and A. Agarwal, J. Solid State Electrochem. 24, 1239 (2020).CrossRef I. Sreedhar, B. Agarwal, P. Goyal, and A. Agarwal, J. Solid State Electrochem. 24, 1239 (2020).CrossRef
14.
15.
Zurück zum Zitat G. Qin, X. Huang, J. Chen, and Z. He, Powder Technol. 235, 880 (2013).CrossRef G. Qin, X. Huang, J. Chen, and Z. He, Powder Technol. 235, 880 (2013).CrossRef
16.
Zurück zum Zitat S.K. Pratihar, Research Signpost, Trivandrum, India, (2008). S.K. Pratihar, Research Signpost, Trivandrum, India, (2008).
17.
18.
19.
Zurück zum Zitat L. Dorthe, F.W. Poulsen, and M. Mogensen, Solid State Ion. 128, 91 (2000).CrossRef L. Dorthe, F.W. Poulsen, and M. Mogensen, Solid State Ion. 128, 91 (2000).CrossRef
20.
21.
22.
Zurück zum Zitat H. Fujii, Y. Katayama, T. Shimura, and H. Iwahara, J. Electroceram. 2, 119 (1998).CrossRef H. Fujii, Y. Katayama, T. Shimura, and H. Iwahara, J. Electroceram. 2, 119 (1998).CrossRef
23.
Zurück zum Zitat H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, and H. Tagawa, Solid State Ion. 122, 1 (1999).CrossRef H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, and H. Tagawa, Solid State Ion. 122, 1 (1999).CrossRef
24.
Zurück zum Zitat M. Mori, Y. Hiei, and T. Yamamoto, J. Am. Ceram. Soc. 84, 781 (2001).CrossRef M. Mori, Y. Hiei, and T. Yamamoto, J. Am. Ceram. Soc. 84, 781 (2001).CrossRef
25.
Zurück zum Zitat G.F. Sun, X.W. Qi, T. Zhang, X.Y. Zhang, and H.H. Chen, Adv. Mater. Res. 624, 30 (2013).CrossRef G.F. Sun, X.W. Qi, T. Zhang, X.Y. Zhang, and H.H. Chen, Adv. Mater. Res. 624, 30 (2013).CrossRef
26.
Zurück zum Zitat X.Y. Zhang, T. Zhang, X.W. Qi, J.Q. Qi, G.F. Sun, H.H. Chen, and R.X. Zhong, Adv. Mater. Res. 624, 26 (2013).CrossRef X.Y. Zhang, T. Zhang, X.W. Qi, J.Q. Qi, G.F. Sun, H.H. Chen, and R.X. Zhong, Adv. Mater. Res. 624, 26 (2013).CrossRef
28.
Zurück zum Zitat J.Y. Park and H.J. Park, J. Korean Cryst. Growth Cryst. Technol. 29, 187 (2019). J.Y. Park and H.J. Park, J. Korean Cryst. Growth Cryst. Technol. 29, 187 (2019).
29.
Zurück zum Zitat S. Singh, R. Pandey, S. Presto, M.P. Carpanese, A. Barbucci, M. Viviani, and P. Singh, Energies 12, 4042 (2019).CrossRef S. Singh, R. Pandey, S. Presto, M.P. Carpanese, A. Barbucci, M. Viviani, and P. Singh, Energies 12, 4042 (2019).CrossRef
30.
Zurück zum Zitat T.L. Nguyen, M. Dokiya, S. Wang, H. Tagawa, and T. Hashimoto, Solid State Ion. 130, 229 (2000).CrossRef T.L. Nguyen, M. Dokiya, S. Wang, H. Tagawa, and T. Hashimoto, Solid State Ion. 130, 229 (2000).CrossRef
31.
Zurück zum Zitat M. Fabián, B.I. Arias-Serrano, A.A. Yaremchenko, H. Kolev, M. Kaňuchová, and J. Briančin, J. Eur. Ceram. Soc. 39, 5298 (2019).CrossRef M. Fabián, B.I. Arias-Serrano, A.A. Yaremchenko, H. Kolev, M. Kaňuchová, and J. Briančin, J. Eur. Ceram. Soc. 39, 5298 (2019).CrossRef
32.
33.
34.
35.
Zurück zum Zitat D. Wyrzykowski, E. Hebanowska, G. Nowak-Wiczk, M. Makowski, and L. Chmurzyński, J. Therm. Anal. Calorim. 104, 731 (2011).CrossRef D. Wyrzykowski, E. Hebanowska, G. Nowak-Wiczk, M. Makowski, and L. Chmurzyński, J. Therm. Anal. Calorim. 104, 731 (2011).CrossRef
36.
Zurück zum Zitat S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, and Y. Chuin-Tih, J. Phys. Chem. B 107, 1044 (2003).CrossRef S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, and Y. Chuin-Tih, J. Phys. Chem. B 107, 1044 (2003).CrossRef
37.
38.
Zurück zum Zitat V. Singh, D.T. Naidu, R.P.S. Chakradhar, Y.C. Ratnakaram, J.J. Zhu, and M. Soni, Phys. B Condens. Matter 403, 3781 (2008).CrossRef V. Singh, D.T. Naidu, R.P.S. Chakradhar, Y.C. Ratnakaram, J.J. Zhu, and M. Soni, Phys. B Condens. Matter 403, 3781 (2008).CrossRef
39.
Zurück zum Zitat O.N. Verma, P.K. Jha, and P. Singh, J. Appl. Phys. 122, 225106 (2017).CrossRef O.N. Verma, P.K. Jha, and P. Singh, J. Appl. Phys. 122, 225106 (2017).CrossRef
41.
43.
Zurück zum Zitat A. Tschöpe, E. Sommer, and R. Birringer, Solid State Ion. 139, 255 (2001).CrossRef A. Tschöpe, E. Sommer, and R. Birringer, Solid State Ion. 139, 255 (2001).CrossRef
45.
Zurück zum Zitat S.U. Sharath, R.K. Singh, B.P. Singh, P. Kumar, and P. Singh, J. Am. Ceram. Soc. 96, 3127 (2013).CrossRef S.U. Sharath, R.K. Singh, B.P. Singh, P. Kumar, and P. Singh, J. Am. Ceram. Soc. 96, 3127 (2013).CrossRef
46.
Zurück zum Zitat A.P. Sakhya, A. Dutta, and T.P. Sinha, Appl. Phys. A Mater. Sci. Process. 114, 1097 (2014).CrossRef A.P. Sakhya, A. Dutta, and T.P. Sinha, Appl. Phys. A Mater. Sci. Process. 114, 1097 (2014).CrossRef
47.
Zurück zum Zitat N.K. Singh, P. Singh, D. Kumar, and O. Parkash, Ionics (Kiel) 18, 127 (2012).CrossRef N.K. Singh, P. Singh, D. Kumar, and O. Parkash, Ionics (Kiel) 18, 127 (2012).CrossRef
48.
Zurück zum Zitat N. Jaiswal, N.K. Singh, D. Kumar, and O. Parkash, J. Power Sources 202, 78 (2012).CrossRef N. Jaiswal, N.K. Singh, D. Kumar, and O. Parkash, J. Power Sources 202, 78 (2012).CrossRef
49.
Zurück zum Zitat I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, and M.M. Hasan, J. Appl. Phys. 112, 074105 (2012).CrossRef I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, and M.M. Hasan, J. Appl. Phys. 112, 074105 (2012).CrossRef
50.
Zurück zum Zitat M.E. Orazem, N. Pébère, and B. Tribollet, J. Electrochem. B 153, 129 (2006).CrossRef M.E. Orazem, N. Pébère, and B. Tribollet, J. Electrochem. B 153, 129 (2006).CrossRef
51.
Zurück zum Zitat O.N. Verma, P.A. Jha, A. Melkeri, and P. Singh, Phys. B Condens. Matter 521, 230 (2017).CrossRef O.N. Verma, P.A. Jha, A. Melkeri, and P. Singh, Phys. B Condens. Matter 521, 230 (2017).CrossRef
52.
Zurück zum Zitat K. Hoang and M.D. Johannes, J. Condens. Matter Phys. 30, 293001 (2018).CrossRef K. Hoang and M.D. Johannes, J. Condens. Matter Phys. 30, 293001 (2018).CrossRef
53.
Zurück zum Zitat S. Park, S. Choi, K.S. Jun, H. Kim, S. Rhee, and Y.J. Park, 44th Eur. Solid State Device Research Conference (ESSDERC), IEEE 50 (2014). S. Park, S. Choi, K.S. Jun, H. Kim, S. Rhee, and Y.J. Park, 44th Eur. Solid State Device Research Conference (ESSDERC), IEEE 50 (2014).
Metadaten
Titel
Influence of Ba Doping on the Electrical Behaviour of La0.9Sr0.1Al0.9Mg0.1O3−δ System for a Solid Electrolyte
verfasst von
Onkar Nath Verma
Saurabh Singh
Vivek K. Singh
M. Najim
Raghvendra Pandey
Prabhakar Singh
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 3/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08653-2

Weitere Artikel der Ausgabe 3/2021

Journal of Electronic Materials 3/2021 Zur Ausgabe

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Effect of Trace Addition of In on Sn-Cu Solder Joint Microstructure Under Electromigration

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Impact of Cryogenic Temperature Environment on Single Solder Joint Mechanical Shear Stability

Neuer Inhalt