Skip to main content
Erschienen in:

30.06.2023

Influence of carrier transport on modulation characteristics of quantum-well semiconductor lasers

verfasst von: Moustafa Ahmed, Maan Al-Alhumaidi

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss modeling the influence of carrier transport phenomena in quantum well (QW) semiconductor lasers on the device's current modulation characteristics. The escape and capture of charge carriers between the QW and the separate confinement heterostructure (SCH) are considered the major carrier transport phenomena. The small-signal analysis is applied to linearize the QW laser's rate equations and obtain expressions for the intensity modulation (IM) response. The carrier transport is assessed in terms of the lifetimes of the carrier escape and capture processes. In this study, we evaluated the impacts of these transport times on both the modulation bandwidth and response peak frequency. In addition, we used the obtained results to assess the tolerance of using the simple standard two-rate equation (STREs) model to describe the modulation properties of QW lasers. We demonstrate that when the capture lifetime is less than 20 ps and the escape lifetime is greater than 0.1 ps, the modulation bandwidth and response peak frequency reach their maximum values, which interestingly match the results simulated by the STRE model. With departures from the ideal ranges of these transport lifetimes, the tolerance of applying STREs becomes poorer. The findings in this study advance and supplement the theory and simulation of QW laser diodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chow, W.W., Sargent III, M.: Semiconductor Laser Physics. Springer, Berlin (1994)CrossRef Chow, W.W., Sargent III, M.: Semiconductor Laser Physics. Springer, Berlin (1994)CrossRef
2.
Zurück zum Zitat Agrawal, G.P., Dutta, N.K.: Semiconductor Laser. Van Nostrand Reinhold, New York (1993)CrossRef Agrawal, G.P., Dutta, N.K.: Semiconductor Laser. Van Nostrand Reinhold, New York (1993)CrossRef
3.
Zurück zum Zitat Doany, F.E., Schares, L., Schow, C.L., Schuster, C., Kuchta, D.M., Pepeljugoski, P.K.: Chip-to-chip optical interconnects. OFC, Anaheim, CA, USA, OFA3 (2006). Doany, F.E., Schares, L., Schow, C.L., Schuster, C., Kuchta, D.M., Pepeljugoski, P.K.: Chip-to-chip optical interconnects. OFC, Anaheim, CA, USA, OFA3 (2006).
4.
Zurück zum Zitat Yamaoka, S., Diamantopoulos, N.P., Nishi, H., Nakao, R., Fujii, T., Takeda, K., Hiraki, T., Tsurugaya, T., Kanazawa, S., Tanobe, H., Kakitsuka, T., Tsuchizawa, T., Koyama, F., Matsuo, S.: Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photon 15, 28–35 (2021)CrossRef Yamaoka, S., Diamantopoulos, N.P., Nishi, H., Nakao, R., Fujii, T., Takeda, K., Hiraki, T., Tsurugaya, T., Kanazawa, S., Tanobe, H., Kakitsuka, T., Tsuchizawa, T., Koyama, F., Matsuo, S.: Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photon 15, 28–35 (2021)CrossRef
5.
Zurück zum Zitat Ahmed, M., Bakry, A., Altuwirqi, R., Alghamdi, M.S., Koyama, F.: Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in millimeter-wave radio over fiber links. Jap. J. Appl. Phys. 52, 124103 (2013)CrossRef Ahmed, M., Bakry, A., Altuwirqi, R., Alghamdi, M.S., Koyama, F.: Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in millimeter-wave radio over fiber links. Jap. J. Appl. Phys. 52, 124103 (2013)CrossRef
6.
Zurück zum Zitat Sasada, N., Nakajima, T., Sekino, Y., Naanishi, A., Mukaikubo, M., Ebisu, M., Mitaki, M., Hayakawa, S., Naoe, K.: Wide-temperature-range (25–80° C) 53-Gbaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission. J. Lightw. Technol. 37(7), 1686–1689 (2019)CrossRef Sasada, N., Nakajima, T., Sekino, Y., Naanishi, A., Mukaikubo, M., Ebisu, M., Mitaki, M., Hayakawa, S., Naoe, K.: Wide-temperature-range (25–80° C) 53-Gbaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission. J. Lightw. Technol. 37(7), 1686–1689 (2019)CrossRef
7.
Zurück zum Zitat Uomi, K., Sasaki, S., Tsuchiya, T., Nakano, H., Chinone, N.: Ultralow chirp and high-speed 1.55 μm multiquantum well λ/4-shifted DFB lasers. IEEE Photon. Technol. Lett. 2, 229–230 (1990)CrossRef Uomi, K., Sasaki, S., Tsuchiya, T., Nakano, H., Chinone, N.: Ultralow chirp and high-speed 1.55 μm multiquantum well λ/4-shifted DFB lasers. IEEE Photon. Technol. Lett. 2, 229–230 (1990)CrossRef
8.
Zurück zum Zitat Morton, P.A., Logan, R.A., Tanbnun-Ek, T., Sciortino, P.F., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwidth 1.55μm GaInAsP p-doped strained multiquantum-well lasers. Electron Lett 23(28), 2156–2157 (1992)CrossRef Morton, P.A., Logan, R.A., Tanbnun-Ek, T., Sciortino, P.F., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwidth 1.55μm GaInAsP p-doped strained multiquantum-well lasers. Electron Lett 23(28), 2156–2157 (1992)CrossRef
9.
Zurück zum Zitat Uomi, K., Aoki, M., Tsuchiya, T., Takai, A.: Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW λ/4-shifted DFB lasers. IEEE J. Quantum Electron. 29, 355–360 (1993)CrossRef Uomi, K., Aoki, M., Tsuchiya, T., Takai, A.: Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW λ/4-shifted DFB lasers. IEEE J. Quantum Electron. 29, 355–360 (1993)CrossRef
10.
Zurück zum Zitat Kito, M., Otsuka, N., Ishino, M., Fujihara, K., Matsui, Y.: Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers. IEEE Photon. Technol. Lett. 6, 690–693 (1994)CrossRef Kito, M., Otsuka, N., Ishino, M., Fujihara, K., Matsui, Y.: Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers. IEEE Photon. Technol. Lett. 6, 690–693 (1994)CrossRef
11.
Zurück zum Zitat Matsui, Y., Murai, H., Arahira, S., Ogawa, Y., Suzuki, A.: Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998)CrossRef Matsui, Y., Murai, H., Arahira, S., Ogawa, Y., Suzuki, A.: Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers. IEEE J. Quantum Electron. 34, 1970–1978 (1998)CrossRef
12.
Zurück zum Zitat Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Kikawa, T., Hamano, F., Fujisaki, S., Taniguchi, T., Nomoto, E., Sawada, M., Yuasa, T.: 12.5-Gb/s direct modulation up to 115 C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure. J. of lightwave Techn. 22, 159 (2004)CrossRef Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Kikawa, T., Hamano, F., Fujisaki, S., Taniguchi, T., Nomoto, E., Sawada, M., Yuasa, T.: 12.5-Gb/s direct modulation up to 115 C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure. J. of lightwave Techn. 22, 159 (2004)CrossRef
13.
Zurück zum Zitat Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Taniguchi, T., Kikawa, T., Aoki, M., Mukaikubo, M.: 40-Gb/s direct modulation with high extinction ratio operation of 1.3- m InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photon. Technol. Lett. 19, 1436–1438 (2007)CrossRef Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Taniguchi, T., Kikawa, T., Aoki, M., Mukaikubo, M.: 40-Gb/s direct modulation with high extinction ratio operation of 1.3- m InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photon. Technol. Lett. 19, 1436–1438 (2007)CrossRef
14.
Zurück zum Zitat Otsubo, K., Matsuda, M., Takada, K., Okumura, S., Ekawa, M., Tanaka, H., Ide, S., Mori, K., Yamamoto, T.: 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Select. TOP. Quantum Electron. 15, 687–693 (2009)CrossRef Otsubo, K., Matsuda, M., Takada, K., Okumura, S., Ekawa, M., Tanaka, H., Ide, S., Mori, K., Yamamoto, T.: 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Select. TOP. Quantum Electron. 15, 687–693 (2009)CrossRef
15.
Zurück zum Zitat Yamamoto, T., Uetake, A., Otsubo, K., Matsuda, M., Okumura, S., Tomabechi, S., Ekawa, M.: Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure. In: 22nd IEEE International Semiconductor Laser Conference, pp. 193–194. IEEE (2010). Yamamoto, T., Uetake, A., Otsubo, K., Matsuda, M., Okumura, S., Tomabechi, S., Ekawa, M.: Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure. In: 22nd IEEE International Semiconductor Laser Conference, pp. 193–194. IEEE (2010).
16.
Zurück zum Zitat Kobayashi, W., Ito, T., Yamanaka, T., Fujisawa, T., Shibata, Y., Kurosaki, T., Kohtoku, M., Tadokoro, T., Sanjoh, H.: 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908–1500908 (2013)CrossRef Kobayashi, W., Ito, T., Yamanaka, T., Fujisawa, T., Shibata, Y., Kurosaki, T., Kohtoku, M., Tadokoro, T., Sanjoh, H.: 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908–1500908 (2013)CrossRef
17.
Zurück zum Zitat Nakahara, K., Wakayama, Y., Kitatani, T., Taniguchi, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: Direct modulation at 56 and 50 Gb/s of 1.3-$\mu $ m InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photonics Technol. Lett. 27(5), 534–536 (2014)CrossRef Nakahara, K., Wakayama, Y., Kitatani, T., Taniguchi, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: Direct modulation at 56 and 50 Gb/s of 1.3-$\mu $ m InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photonics Technol. Lett. 27(5), 534–536 (2014)CrossRef
18.
Zurück zum Zitat Matsui, Y., Pham, T., Sudo, T., Carey, G., Young, B., Xu, J., Cole, C., Roxlo, C.: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser. J. Lightwave Technol. 34(11), 2677–2683 (2016)CrossRef Matsui, Y., Pham, T., Sudo, T., Carey, G., Young, B., Xu, J., Cole, C., Roxlo, C.: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser. J. Lightwave Technol. 34(11), 2677–2683 (2016)CrossRef
19.
Zurück zum Zitat Nishi, H., Fujii, T., Takeda, K., Hasebe, K., Kakitsuka, T., Tsuchizawa, T., Yamamoto, T., Yamada, K., Matsuo, S.: Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. Opt. Express 24(16), 18346–18352 (2016)CrossRef Nishi, H., Fujii, T., Takeda, K., Hasebe, K., Kakitsuka, T., Tsuchizawa, T., Yamamoto, T., Yamada, K., Matsuo, S.: Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. Opt. Express 24(16), 18346–18352 (2016)CrossRef
20.
Zurück zum Zitat Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin-AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827 (1974)CrossRef Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin-AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827 (1974)CrossRef
21.
Zurück zum Zitat van der Ziel, J.P., Dongle, R., Miller, R.C., Wiegman, W., Nordland, W.A., Jr.: Laser oscillation from quantum states in very thin GaAs−Al 0.2 Ga 0.8 As multilayer structures. Appl. Phys. Lett. 26, 463 (1975)CrossRef van der Ziel, J.P., Dongle, R., Miller, R.C., Wiegman, W., Nordland, W.A., Jr.: Laser oscillation from quantum states in very thin GaAs−Al 0.2 Ga 0.8 As multilayer structures. Appl. Phys. Lett. 26, 463 (1975)CrossRef
22.
Zurück zum Zitat Holonyak, R.M., Jr., Kolbas, R.D.: Dupuis, and PD Dapkus. IEEE J. Quant. Electron. QE-16, 170 (1980)CrossRef Holonyak, R.M., Jr., Kolbas, R.D.: Dupuis, and PD Dapkus. IEEE J. Quant. Electron. QE-16, 170 (1980)CrossRef
23.
Zurück zum Zitat Weisser, S., Larkins, E.C., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J. D., Romero, B., Sah, R.E., Schenfelder, A., Reosenzweig, J.: Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity Ino.3jGao.6jAs-GaAs multiple quantum-well lasers. IEEE Photon. Technol. Lett. Weisser, S., Larkins, E.C., Czotscher, K., Benz, W., Daleiden, J., Esquivias, I., Fleissner, J., Ralston, J. D., Romero, B., Sah, R.E., Schenfelder, A., Reosenzweig, J.: Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity Ino.3jGao.6jAs-GaAs multiple quantum-well lasers. IEEE Photon. Technol. Lett.
24.
Zurück zum Zitat Sato, K., Kuwahar, S., Miyamoto, Y.: Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes. J. Lightwave Technol. 23(11), 3790 (2005)CrossRef Sato, K., Kuwahar, S., Miyamoto, Y.: Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes. J. Lightwave Technol. 23(11), 3790 (2005)CrossRef
25.
Zurück zum Zitat Morton, P.A., Logan, R.A., Tanbun-Ek, T., Sciortino, P.F., Jr., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwith 1.55 µm GaInAsP p-doped strained multiquantum well lasers. Electron. Lett. 28, 2156–2157 (1992)CrossRef Morton, P.A., Logan, R.A., Tanbun-Ek, T., Sciortino, P.F., Jr., Sergent, A.M., Montgomery, R.K., Lee, B.T.: 25 GHz bandwith 1.55 µm GaInAsP p-doped strained multiquantum well lasers. Electron. Lett. 28, 2156–2157 (1992)CrossRef
26.
Zurück zum Zitat Nagarajan, R., Ishikawa, M., Fukushima, T., Gills, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990–2008 (1992)CrossRef Nagarajan, R., Ishikawa, M., Fukushima, T., Gills, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990–2008 (1992)CrossRef
27.
Zurück zum Zitat Kan, S.C., Vassilovski, D., Wu, T.C., Lau, K.Y.: On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers. Appl. Phys. Lett. 61, 752–754 (1992)CrossRef Kan, S.C., Vassilovski, D., Wu, T.C., Lau, K.Y.: On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers. Appl. Phys. Lett. 61, 752–754 (1992)CrossRef
28.
Zurück zum Zitat Homar, M., Mirasso, C.R., Esquivias, I., San Miguel, M.: Modulation response of quantum-well lasers with carrier transport effects under weak optical feedback. IEEE Photon. Lett. 8, 861–863 (1996)CrossRef Homar, M., Mirasso, C.R., Esquivias, I., San Miguel, M.: Modulation response of quantum-well lasers with carrier transport effects under weak optical feedback. IEEE Photon. Lett. 8, 861–863 (1996)CrossRef
29.
Zurück zum Zitat Nagarajan, R., Fukushima, T., Corzine, S.W., Bowers, J.E.: Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett. 59, 1835 (1991)CrossRef Nagarajan, R., Fukushima, T., Corzine, S.W., Bowers, J.E.: Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett. 59, 1835 (1991)CrossRef
30.
Zurück zum Zitat Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping. Appl. Phys. Lett. 58, 2326 (1991)CrossRef Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: High‐speed InGaAs/GaAs strained multiple quantum well lasers with low damping. Appl. Phys. Lett. 58, 2326 (1991)CrossRef
31.
Zurück zum Zitat Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: Single quantum well strained InGaAs/GaAs lasers with large modulation bandwidth and low damping. Electron. Lett. 27, 1058 (1991)CrossRef Nagarajan, R., Fukushima, T., Bowers, J.E., Geels, R.S., Coldren, L.A.: Single quantum well strained InGaAs/GaAs lasers with large modulation bandwidth and low damping. Electron. Lett. 27, 1058 (1991)CrossRef
32.
Zurück zum Zitat Arakawa, Y., Yariv, A.: Quantum well lasers-gain, spectra, dynamics. IEEE J. Quantum Electron. 22, 1887–1899 (1986)CrossRef Arakawa, Y., Yariv, A.: Quantum well lasers-gain, spectra, dynamics. IEEE J. Quantum Electron. 22, 1887–1899 (1986)CrossRef
33.
Zurück zum Zitat Mena, P.V.: Circuit-level modeling and simulation of semiconductor lasers. Ph. D. Thesis, University of Illinois at Urbana-Champaign (1998) Mena, P.V.: Circuit-level modeling and simulation of semiconductor lasers. Ph. D. Thesis, University of Illinois at Urbana-Champaign (1998)
34.
Zurück zum Zitat Bogdan, L., Sterian, P., Popescu, M.O.: Rate equations based models for quantum-well laser characterisation. Proc. SPIE 5226, 97–83 (2003) Bogdan, L., Sterian, P., Popescu, M.O.: Rate equations based models for quantum-well laser characterisation. Proc. SPIE 5226, 97–83 (2003)
35.
Zurück zum Zitat Ahmed, M.F., Bakry, A.H., Albelady, F.T.: Digital modulation characteristics of high-speed semiconductor laser for use in optical communication systems. Arab. J. Sci. Eng. 39(7), 5745–5752 (2014)CrossRef Ahmed, M.F., Bakry, A.H., Albelady, F.T.: Digital modulation characteristics of high-speed semiconductor laser for use in optical communication systems. Arab. J. Sci. Eng. 39(7), 5745–5752 (2014)CrossRef
36.
Zurück zum Zitat Ahmed, M.: Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys. Wave Phenomena 22(4), 266–272 (2014)CrossRef Ahmed, M.: Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys. Wave Phenomena 22(4), 266–272 (2014)CrossRef
37.
Zurück zum Zitat Yamada, M., Haraguchi, Y.: Linewidth broadening of SCH quantum-well lasers enhanced by carrier fluctuations in optical guiding layers. IEEE J. Quantum Electron. 29, 1676–1681 (1991)CrossRef Yamada, M., Haraguchi, Y.: Linewidth broadening of SCH quantum-well lasers enhanced by carrier fluctuations in optical guiding layers. IEEE J. Quantum Electron. 29, 1676–1681 (1991)CrossRef
38.
Zurück zum Zitat Keating, T., Jin, X., Chuang, S.L., Fellow, I.E.E.E., Hess, K.: Fellow IEEE. Temperature dependence of electrical and optical modulation responses of quantum-well lasers. IEEE J. Quantum Electron. 35, 1526–1534 (1999)CrossRef Keating, T., Jin, X., Chuang, S.L., Fellow, I.E.E.E., Hess, K.: Fellow IEEE. Temperature dependence of electrical and optical modulation responses of quantum-well lasers. IEEE J. Quantum Electron. 35, 1526–1534 (1999)CrossRef
39.
Zurück zum Zitat Polland, H.-J., Leo, K., Rother, K., Ploog, K., Feldman, J., Peter, G., Gobel, E.O.: Trapping of carriers in single quantum wells with different configuration of the confinement layers. Phys. Rev. B(38), 7635–7648 (1988)CrossRef Polland, H.-J., Leo, K., Rother, K., Ploog, K., Feldman, J., Peter, G., Gobel, E.O.: Trapping of carriers in single quantum wells with different configuration of the confinement layers. Phys. Rev. B(38), 7635–7648 (1988)CrossRef
40.
Zurück zum Zitat Morin, S., Deveaud, B., Clerot, F., Fujiwara, K., Mitsunaga, K.: Capture of photoexcited carriers in a single quantum well with different confinement structures. IEEE J. Quanrum Electron. 27, 1669–1675 (1991)CrossRef Morin, S., Deveaud, B., Clerot, F., Fujiwara, K., Mitsunaga, K.: Capture of photoexcited carriers in a single quantum well with different confinement structures. IEEE J. Quanrum Electron. 27, 1669–1675 (1991)CrossRef
41.
Zurück zum Zitat Kassa W.E.: Electrical modeling of semiconductor laser for high data rate wireless communication. Ph.D. Thesis, University of Paris-Est (2015). Kassa W.E.: Electrical modeling of semiconductor laser for high data rate wireless communication. Ph.D. Thesis, University of Paris-Est (2015).
42.
Zurück zum Zitat Weisser, S., Esquivias, I., Tasker, P.J., Ralston, J.D., Rosenzweig, J.: Impedance, modulation response, and equivalent circuit of ultra-high-speed Ino.x, Gaa.ejAs/GaAs MQW lasers with p-doping. IEEE Photon. Technol. Lett. 6, 782–785 (1994)CrossRef Weisser, S., Esquivias, I., Tasker, P.J., Ralston, J.D., Rosenzweig, J.: Impedance, modulation response, and equivalent circuit of ultra-high-speed Ino.x, Gaa.ejAs/GaAs MQW lasers with p-doping. IEEE Photon. Technol. Lett. 6, 782–785 (1994)CrossRef
43.
Zurück zum Zitat Al-Otaibi, R., Ahmed, M.: Modelling of intensity noise, frequency noise and linewidth of semiconductor laser and their dependence on optical gain formulation. Paraman J. Phys. 95, 138 (2021)CrossRef Al-Otaibi, R., Ahmed, M.: Modelling of intensity noise, frequency noise and linewidth of semiconductor laser and their dependence on optical gain formulation. Paraman J. Phys. 95, 138 (2021)CrossRef
44.
Zurück zum Zitat Tsai, C.Y., Shih, F.P., Sung, T.L., Wu, T.Y., Chen, C.H., Tsai, C.Y.: A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape. IEEE J. Quantum Electron. 33, 2084–2096 (1997)CrossRef Tsai, C.Y., Shih, F.P., Sung, T.L., Wu, T.Y., Chen, C.H., Tsai, C.Y.: A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape. IEEE J. Quantum Electron. 33, 2084–2096 (1997)CrossRef
45.
Zurück zum Zitat Talele, K., Samuel, E.P., Patil, D.S.: Analysis of carrier transport properties in GaN/Al0.3Ga0.7N multiple quantum well nanostructures. Optik 122, 626–630 (2011)CrossRef Talele, K., Samuel, E.P., Patil, D.S.: Analysis of carrier transport properties in GaN/Al0.3Ga0.7N multiple quantum well nanostructures. Optik 122, 626–630 (2011)CrossRef
46.
Zurück zum Zitat Nagarajan, R.: Carrier transport effects in quantum well lasers: an overview. Opt. and Quantum Electron. 26, S647–S666 (1994)CrossRef Nagarajan, R.: Carrier transport effects in quantum well lasers: an overview. Opt. and Quantum Electron. 26, S647–S666 (1994)CrossRef
47.
Zurück zum Zitat Borruel, L., Arias, J., Romeroa, B., Esquiviasa, I.: Incorporation of carrier capture and escape processes into a self-consistent cw model for Quantum Well lasers. Microelectron. J. 34, 675–677 (2003)CrossRef Borruel, L., Arias, J., Romeroa, B., Esquiviasa, I.: Incorporation of carrier capture and escape processes into a self-consistent cw model for Quantum Well lasers. Microelectron. J. 34, 675–677 (2003)CrossRef
48.
Zurück zum Zitat Hirayama, H., Yoshida, I., Miyake, Y., Asada, M.: Estimation of carrier capture time of quantum‐well lasers by spontaneous emission spectra. Appl. Phys. Lett. 61, 2398 (1992)CrossRef Hirayama, H., Yoshida, I., Miyake, Y., Asada, M.: Estimation of carrier capture time of quantum‐well lasers by spontaneous emission spectra. Appl. Phys. Lett. 61, 2398 (1992)CrossRef
49.
Zurück zum Zitat Kersting, R., Schweler, R., Wolter, K., Leo, K., Kurz, H.: Dynamics of carrier transport and carrier capture in In 1− x Ga x As/InP heterostructures. Phys. Rev. E 46, 1639 (1992)CrossRef Kersting, R., Schweler, R., Wolter, K., Leo, K., Kurz, H.: Dynamics of carrier transport and carrier capture in In 1− x Ga x As/InP heterostructures. Phys. Rev. E 46, 1639 (1992)CrossRef
50.
Zurück zum Zitat Grabmaier, A., Schiifthaler, M., Hangleiter, A.: Carrier transport limited bandwidth of 1.55 μm quantum-well lasers. Appl. Phys. Lett. 62, 52–54 (1993)CrossRef Grabmaier, A., Schiifthaler, M., Hangleiter, A.: Carrier transport limited bandwidth of 1.55 μm quantum-well lasers. Appl. Phys. Lett. 62, 52–54 (1993)CrossRef
51.
Zurück zum Zitat Wasiak, M., Spiewak, P., Haghighi, N., Gebski, M., Karbownik, E.P., Komar, P., Lott, J.A., Sarzała, R.P.: Numerical model for small-signal modulation response in vertical-cavity surface-emitting lasers. J. Phys. D Appl. Phys. 53, 345101 (2020)CrossRef Wasiak, M., Spiewak, P., Haghighi, N., Gebski, M., Karbownik, E.P., Komar, P., Lott, J.A., Sarzała, R.P.: Numerical model for small-signal modulation response in vertical-cavity surface-emitting lasers. J. Phys. D Appl. Phys. 53, 345101 (2020)CrossRef
52.
Zurück zum Zitat Yamada, M.: Theory of Semiconductor Lasers. Springer, Japan (2016) Yamada, M.: Theory of Semiconductor Lasers. Springer, Japan (2016)
53.
Zurück zum Zitat Ahmed, M.: Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes. Intl. J. Numer. Model. 17, 147–163 (2004)MATHCrossRef Ahmed, M.: Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes. Intl. J. Numer. Model. 17, 147–163 (2004)MATHCrossRef
Metadaten
Titel
Influence of carrier transport on modulation characteristics of quantum-well semiconductor lasers
verfasst von
Moustafa Ahmed
Maan Al-Alhumaidi
Publikationsdatum
30.06.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02060-6