Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2019

13.11.2018

Influence of Cell Anisotropy and Relative Density on Compressive Deformation Responses of LM13-Cenosphere Hybrid Foam

verfasst von: Shyam Birla, D. P. Mondal, S. Das, Anurag Kulshrestha, S. L. Ahirwar, A. N. Ch. Venkat, Rajeev Kumar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article deals with closed-cell aluminum alloy LM13-cenosphere hybrid foams (ACHFs) with cell anisotropy prepared through stir casing technique. The compressive deformation behavior of hybrid foams in both transverse and longitudinal directions was measured at a strain rate of 0.01/s. The hybrid foam loaded in longitudinal direction (LD) shows higher plastic collapse stress than that in transverse direction (TD). The stress drop ratio is also observed to be higher in the LD. The plastic collapse stress and energy absorption capacity of ACHFs follow the power law relationship with relative density in both the directions. The plateau stress is higher in case of LD and densification strains are marginally higher in case of LD than that in TD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal foams, Prog. Mater. Sci., 2001, 46, p 559–632CrossRef J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal foams, Prog. Mater. Sci., 2001, 46, p 559–632CrossRef
2.
Zurück zum Zitat M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, and L. Gibson, Metal Foams: A Design Guide, Elsevier, Amsterdam, 2000 M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, and L. Gibson, Metal Foams: A Design Guide, Elsevier, Amsterdam, 2000
3.
Zurück zum Zitat D.P. Mondal, N. Jha, B. Gull, S. Das, and A. Badkul, Microarchitecture and Compressive Deformation Behaviour of Al-alloy (LM13)–Cenosphere Hybrid Al-Foam Prepared Using CaCO3 as Foaming Agent, Mater. Sci. Eng. A, 2013, 560, p 601–610CrossRef D.P. Mondal, N. Jha, B. Gull, S. Das, and A. Badkul, Microarchitecture and Compressive Deformation Behaviour of Al-alloy (LM13)–Cenosphere Hybrid Al-Foam Prepared Using CaCO3 as Foaming Agent, Mater. Sci. Eng. A, 2013, 560, p 601–610CrossRef
4.
Zurück zum Zitat D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta et al., Titanium Foam with Coarser Cell Size and Wide Range of Porosity Using Different Types of Evaporative Space Holders Through Powder Metallurgy Route, Mater. Des., 2014, 63, p 89–99CrossRef D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta et al., Titanium Foam with Coarser Cell Size and Wide Range of Porosity Using Different Types of Evaporative Space Holders Through Powder Metallurgy Route, Mater. Des., 2014, 63, p 89–99CrossRef
5.
Zurück zum Zitat S. Birla, D.P. Mondal, S. Das, A. Khare, and J.P. Singh, Effect of Cenosphere Particle Size and Relative Density on the Compressive Deformation Behavior of Aluminum-Cenosphere Hybrid Foam, Mater. Des., 2017, 117, p 168–177CrossRef S. Birla, D.P. Mondal, S. Das, A. Khare, and J.P. Singh, Effect of Cenosphere Particle Size and Relative Density on the Compressive Deformation Behavior of Aluminum-Cenosphere Hybrid Foam, Mater. Des., 2017, 117, p 168–177CrossRef
6.
Zurück zum Zitat D.P. Mondal, J.D. Majumder, N. Jha, A. Badkul, S. Das, and A. Patel, Titanium-Cenosphere Syntactic Foam Made Through Powder Metallurgy Route, Mater. Des., 2012, 34, p 82–89CrossRef D.P. Mondal, J.D. Majumder, N. Jha, A. Badkul, S. Das, and A. Patel, Titanium-Cenosphere Syntactic Foam Made Through Powder Metallurgy Route, Mater. Des., 2012, 34, p 82–89CrossRef
7.
Zurück zum Zitat A. Rabiei and M. Garcia-Avila, Effect of Various Parameters on Properties of Composite Steel Foams Under Variety of Loading Rates, Mater. Sci. Eng. A, 2013, 564, p 539–547CrossRef A. Rabiei and M. Garcia-Avila, Effect of Various Parameters on Properties of Composite Steel Foams Under Variety of Loading Rates, Mater. Sci. Eng. A, 2013, 564, p 539–547CrossRef
8.
Zurück zum Zitat A. Daoud, Effect of Strain Rate on Compressive Properties of Novel Zn12Al Based Composite Foams Containing Hybrid Pores, Mater. Sci. Eng. A, 2009, 525, p 7–17CrossRef A. Daoud, Effect of Strain Rate on Compressive Properties of Novel Zn12Al Based Composite Foams Containing Hybrid Pores, Mater. Sci. Eng. A, 2009, 525, p 7–17CrossRef
9.
Zurück zum Zitat K. Kitazono, Y. Kikuchi, E. Sato, and K. Kuribayashi, Anisotropic Compressive Behavior of Al-Mg Alloy Foams Manufactured Through Accumulative Roll-Bonding Process, Mater. Lett., 2007, 61, p 1771–1774CrossRef K. Kitazono, Y. Kikuchi, E. Sato, and K. Kuribayashi, Anisotropic Compressive Behavior of Al-Mg Alloy Foams Manufactured Through Accumulative Roll-Bonding Process, Mater. Lett., 2007, 61, p 1771–1774CrossRef
10.
Zurück zum Zitat P.K. Rohatgi, A. Daoud, B.F. Schultz, and T. Puri, Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites, Compos. Part A Appl. Sci. Manuf., 2009, 40, p 883–896CrossRef P.K. Rohatgi, A. Daoud, B.F. Schultz, and T. Puri, Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites, Compos. Part A Appl. Sci. Manuf., 2009, 40, p 883–896CrossRef
11.
Zurück zum Zitat L. Licitra, D.D. Luong, O.M. Strbik Iii, and N. Gupta, Dynamic Properties of Alumina Hollow Particle Filled Aluminum Alloy A356 Matrix Syntactic Foams, Mater. Des., 2015, 66, p 504–515CrossRef L. Licitra, D.D. Luong, O.M. Strbik Iii, and N. Gupta, Dynamic Properties of Alumina Hollow Particle Filled Aluminum Alloy A356 Matrix Syntactic Foams, Mater. Des., 2015, 66, p 504–515CrossRef
12.
Zurück zum Zitat J. Banhart, Light-Metal Foams—History of Innovation and Technological Challenges, Adv. Eng. Mater., 2013, 15, p 82–111CrossRef J. Banhart, Light-Metal Foams—History of Innovation and Technological Challenges, Adv. Eng. Mater., 2013, 15, p 82–111CrossRef
13.
Zurück zum Zitat S. Birla, D.P. Mondal, S. Das, N. Prasanth, A.K. Jha, and ANCh Venkat, Compressive Deformation Behavior of Highly Porous AA2014-Cenosphere Closed Cell Hybrid Foam Prepared Using CaH2 as Foaming Agent: Comparison with Aluminum Foam and Syntactic Foam, Trans. Indian Inst. Met., 2017, 70(7), p 1827–1840CrossRef S. Birla, D.P. Mondal, S. Das, N. Prasanth, A.K. Jha, and ANCh Venkat, Compressive Deformation Behavior of Highly Porous AA2014-Cenosphere Closed Cell Hybrid Foam Prepared Using CaH2 as Foaming Agent: Comparison with Aluminum Foam and Syntactic Foam, Trans. Indian Inst. Met., 2017, 70(7), p 1827–1840CrossRef
14.
Zurück zum Zitat S. Birla, D.P. Mondal, S. Das, D.K. Kashyap, and ANCh Venkat, Effect of Cenosphere Content on the Compressive Deformation Behaviour of Aluminum-Cenosphere Hybrid Foam, Mater. Sci. Eng. A, 2017, 685, p 213–226CrossRef S. Birla, D.P. Mondal, S. Das, D.K. Kashyap, and ANCh Venkat, Effect of Cenosphere Content on the Compressive Deformation Behaviour of Aluminum-Cenosphere Hybrid Foam, Mater. Sci. Eng. A, 2017, 685, p 213–226CrossRef
15.
Zurück zum Zitat A. Daoud, Compressive Response and Energy Absorption of Foamed A359-Al2O3 Particle Composites, J. Alloys Compd., 2009, 486, p 597–605CrossRef A. Daoud, Compressive Response and Energy Absorption of Foamed A359-Al2O3 Particle Composites, J. Alloys Compd., 2009, 486, p 597–605CrossRef
16.
Zurück zum Zitat D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S. Senthil Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam Under the Diverse Strain Rate, J. Alloys Compd., 2016, 656, p 218–225CrossRef D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S. Senthil Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam Under the Diverse Strain Rate, J. Alloys Compd., 2016, 656, p 218–225CrossRef
18.
Zurück zum Zitat Z.G. Xu, J.W. Fu, T.J. Luo, and Y.S. Yang, Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams, Mater. Des., 2012, 34, p 40–44CrossRef Z.G. Xu, J.W. Fu, T.J. Luo, and Y.S. Yang, Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams, Mater. Des., 2012, 34, p 40–44CrossRef
19.
Zurück zum Zitat N.V. Ravi Kumar, N. Ramachandra Rao, and A.A. Gokhale, Effect of SiC Particle Content on Foaming and Mechanical Properties of Remelted and Diluted A356/Sic Composite, Mater. Sci. Eng. A, 2014, 598, p 343–349CrossRef N.V. Ravi Kumar, N. Ramachandra Rao, and A.A. Gokhale, Effect of SiC Particle Content on Foaming and Mechanical Properties of Remelted and Diluted A356/Sic Composite, Mater. Sci. Eng. A, 2014, 598, p 343–349CrossRef
20.
Zurück zum Zitat D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation and Characterisation of Aluminium Alloy Foams With TiH2 as a Foaming Agent, Mater. Sci. Technol., 2016, 32, p 1338–1345CrossRef D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation and Characterisation of Aluminium Alloy Foams With TiH2 as a Foaming Agent, Mater. Sci. Technol., 2016, 32, p 1338–1345CrossRef
21.
Zurück zum Zitat I.N. Orbulov and J. Ginsztler, Compressive Characteristics of Metal Matrix Syntactic Foams, Compos Part A Appl. Sci. Manuf., 2012, 43, p 553–561CrossRef I.N. Orbulov and J. Ginsztler, Compressive Characteristics of Metal Matrix Syntactic Foams, Compos Part A Appl. Sci. Manuf., 2012, 43, p 553–561CrossRef
22.
Zurück zum Zitat M. Taherishargh, E. Linul, S. Broxtermann, and T. Fiedler, The Mechanical Properties of Expanded Perlite-Aluminium Syntactic Foam at Elevated Temperatures, J. Alloys Compd., 2018, 737, p 590–596CrossRef M. Taherishargh, E. Linul, S. Broxtermann, and T. Fiedler, The Mechanical Properties of Expanded Perlite-Aluminium Syntactic Foam at Elevated Temperatures, J. Alloys Compd., 2018, 737, p 590–596CrossRef
23.
Zurück zum Zitat E. Linul, N. Movahedi, and L. Marsavina, The Temperature and Anisotropy Effect on Compressive Behavior of Cylindrical Closed-Cell Aluminum-Alloy Foams, J. Alloys Compd., 2018, 740, p 1172–1179CrossRef E. Linul, N. Movahedi, and L. Marsavina, The Temperature and Anisotropy Effect on Compressive Behavior of Cylindrical Closed-Cell Aluminum-Alloy Foams, J. Alloys Compd., 2018, 740, p 1172–1179CrossRef
24.
Zurück zum Zitat I.N. Orbulov, Compressive Properties of Aluminium Matrix Syntactic Foams, Mater. Sci. Eng. A, 2012, 555, p 52–56CrossRef I.N. Orbulov, Compressive Properties of Aluminium Matrix Syntactic Foams, Mater. Sci. Eng. A, 2012, 555, p 52–56CrossRef
25.
Zurück zum Zitat Y. Mu, G. Yao, and H. Luo, Effect of Cell Shape Anisotropy on the Compressive Behavior of Closed-Cell Aluminum Foams, Mater. Des., 2010, 31, p 1567–1569CrossRef Y. Mu, G. Yao, and H. Luo, Effect of Cell Shape Anisotropy on the Compressive Behavior of Closed-Cell Aluminum Foams, Mater. Des., 2010, 31, p 1567–1569CrossRef
26.
Zurück zum Zitat Q. Fang, J. Zhang, Y. Zhang, H. Wu, and Z. Gong, A 3D Mesoscopic Model for the Closed-Cell Metallic Foams Subjected to Static and Dynamic Loadings, Int. J. Impact Eng., 2015, 82, p 103–112CrossRef Q. Fang, J. Zhang, Y. Zhang, H. Wu, and Z. Gong, A 3D Mesoscopic Model for the Closed-Cell Metallic Foams Subjected to Static and Dynamic Loadings, Int. J. Impact Eng., 2015, 82, p 103–112CrossRef
27.
Zurück zum Zitat X. Xia, X. Chen, Z. Zhang, X. Chen, W. Zhao, and B. Liao, Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam, J. Magnes. Alloys, 2013, 1, p 330–335CrossRef X. Xia, X. Chen, Z. Zhang, X. Chen, W. Zhao, and B. Liao, Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam, J. Magnes. Alloys, 2013, 1, p 330–335CrossRef
28.
Zurück zum Zitat W.-Y. Jang, W.-Y. Hsieh, C.-C. Miao, and Y.-C. Yen, Microstructure and Mechanical Properties of ALPORAS Closed-Cell Aluminium Foam, Mater. Charact., 2015, 107, p 228–238CrossRef W.-Y. Jang, W.-Y. Hsieh, C.-C. Miao, and Y.-C. Yen, Microstructure and Mechanical Properties of ALPORAS Closed-Cell Aluminium Foam, Mater. Charact., 2015, 107, p 228–238CrossRef
29.
Zurück zum Zitat D.P. Mondal, M.D. Goel, N. Bagde, N. Jha, S. Sahu, and A.K. Barnwal, Closed Cell ZA27-SiC Foam Made Through Stir-Casting Technique, Mater. Des., 2014, 57, p 315–324CrossRef D.P. Mondal, M.D. Goel, N. Bagde, N. Jha, S. Sahu, and A.K. Barnwal, Closed Cell ZA27-SiC Foam Made Through Stir-Casting Technique, Mater. Des., 2014, 57, p 315–324CrossRef
30.
Zurück zum Zitat M.D. Goel, D.P. Mondal, M.S. Yadav, and S.K. Gupta, Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Aluminum Cenosphere Syntactic Foam, Mater. Sci. Eng. A, 2014, 590, p 406–415CrossRef M.D. Goel, D.P. Mondal, M.S. Yadav, and S.K. Gupta, Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Aluminum Cenosphere Syntactic Foam, Mater. Sci. Eng. A, 2014, 590, p 406–415CrossRef
31.
Zurück zum Zitat Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu, Deformation Mechanisms of Closed-Cell Aluminum Foam in Compression, Scr. Mater., 2010, 63, p 629–632CrossRef Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu, Deformation Mechanisms of Closed-Cell Aluminum Foam in Compression, Scr. Mater., 2010, 63, p 629–632CrossRef
32.
Zurück zum Zitat C. Park and S.R. Nutt, Anisotropy and Strain Localization in Steel Foam, Mater. Sci. Eng. A, 2001, 299, p 68–74CrossRef C. Park and S.R. Nutt, Anisotropy and Strain Localization in Steel Foam, Mater. Sci. Eng. A, 2001, 299, p 68–74CrossRef
33.
Zurück zum Zitat L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999 L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999
34.
Zurück zum Zitat T.G. Nieh, K. Higashi, and J. Wadsworth, Effect of Cell Morphology on the Compressive Properties of Open-Cell Aluminum Foams, Mater. Sci. Eng. A, 2000, 283, p 105–110CrossRef T.G. Nieh, K. Higashi, and J. Wadsworth, Effect of Cell Morphology on the Compressive Properties of Open-Cell Aluminum Foams, Mater. Sci. Eng. A, 2000, 283, p 105–110CrossRef
35.
Zurück zum Zitat E. Amsterdam, H. Van Hoorn, J.T.M. De Hosson, and P.R. Onck, The Influence of Cell Shape Anisotropy on the Tensile Behavior of Open Cell Aluminum Foam, Adv. Eng. Mater., 2008, 10, p 877–881CrossRef E. Amsterdam, H. Van Hoorn, J.T.M. De Hosson, and P.R. Onck, The Influence of Cell Shape Anisotropy on the Tensile Behavior of Open Cell Aluminum Foam, Adv. Eng. Mater., 2008, 10, p 877–881CrossRef
36.
Zurück zum Zitat X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, and P. Ienny, Mechanical Properties and Non-Homogeneous Deformation of Open-Cell Nickel Foams: Application of the Mechanics of Cellular Solids and of Porous Materials, Mater. Sci. Eng. A, 2000, 289, p 276–288CrossRef X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, and P. Ienny, Mechanical Properties and Non-Homogeneous Deformation of Open-Cell Nickel Foams: Application of the Mechanics of Cellular Solids and of Porous Materials, Mater. Sci. Eng. A, 2000, 289, p 276–288CrossRef
37.
Zurück zum Zitat N. Chand, P. Sharma, and M. Fahim, Correlation of Mechanical and Tribological Properties of Organosilane Modified Cenosphere Filled High Density Polyethylene, Mater. Sci. Eng. A, 2010, 527, p 5873–5878CrossRef N. Chand, P. Sharma, and M. Fahim, Correlation of Mechanical and Tribological Properties of Organosilane Modified Cenosphere Filled High Density Polyethylene, Mater. Sci. Eng. A, 2010, 527, p 5873–5878CrossRef
38.
Zurück zum Zitat D.P. Mondal, S. Das, N. Ramakrishnan, and K. Uday Bhasker, Cenosphere Filled Aluminum Syntactic Foam Made Through Stir-Casting Technique, Compos. Part A: Appl. Sci. Manuf., 2009, 40, p 279–288CrossRef D.P. Mondal, S. Das, N. Ramakrishnan, and K. Uday Bhasker, Cenosphere Filled Aluminum Syntactic Foam Made Through Stir-Casting Technique, Compos. Part A: Appl. Sci. Manuf., 2009, 40, p 279–288CrossRef
39.
Zurück zum Zitat D.P. Mondal, N. Jha, A. Badkul, B. Gul, S. Rathod, and S. Das, Effect of Age Hardening on Compressive Deformation Behavior of Al-Alloy (LM13)–Cenosphere Hybrid Foam Prepared Using CaCo3 as a Foaming Agent, J. Mater. Res., 2013, 28, p 2528–2538CrossRef D.P. Mondal, N. Jha, A. Badkul, B. Gul, S. Rathod, and S. Das, Effect of Age Hardening on Compressive Deformation Behavior of Al-Alloy (LM13)–Cenosphere Hybrid Foam Prepared Using CaCo3 as a Foaming Agent, J. Mater. Res., 2013, 28, p 2528–2538CrossRef
Metadaten
Titel
Influence of Cell Anisotropy and Relative Density on Compressive Deformation Responses of LM13-Cenosphere Hybrid Foam
verfasst von
Shyam Birla
D. P. Mondal
S. Das
Anurag Kulshrestha
S. L. Ahirwar
A. N. Ch. Venkat
Rajeev Kumar
Publikationsdatum
13.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3731-x

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Engineering and Performance 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.