Skip to main content

2021 | OriginalPaper | Buchkapitel

Influence of Compressive Preloading on Range of Motion and Endplate Stresses in the Cervical Spine During Flexion/Extension

verfasst von : Srikanth Srinivasan, R. Deepak, P. Yuvaraj, D. Davidson Jebaseelan, Narayan Yoganandan, S. Rajasekaran

Erschienen in: 17th International Conference on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The natural weight of the head, any head supported mass and various muscle forces result in eccentric compressive loads that should be effectively supported by the human cervical spine to protect the spinal cord and maintain interrelationships among vertebrae. Different experimental studies have used various testing protocols to study the effect of a compressive preload on the biomechanics of the cervical spine. The objective of this study is to investigate the effect of such an in-vivo compressive load on the range of motion (ROM) of the sub-axial column using a novel computational method. An anatomically accurate and validated finite element model (FEM) of a human sub-axial spinal column (C2-T1) was used in this study. Material properties for all spine components were taken from literature. Cortical bone, cancellous core and intervertebral disks were modelled using linear isotropic elements. Ligaments were modelled using shell elements with non-linear material properties. An algorithm programmed using Python was interfaced with ABAQUS to calculate ROMs with nodal data extracted from its workspace. The code used nodal co-ordinates at the endplates to define physiological planes, and this process helped to calculate the angle between the deformed and undeformed model. The ROMs was successfully computed using these definitions, and EPS was measured across all the segmental units.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barrey, C., Rousseau, M.A., Persohn, S., Campana, S., Perrin, G., Skalli, W.: Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation. Eur. J. Orthop. Surg. Traumatol. 25(Suppl 1), S155-165 (2015)CrossRef Barrey, C., Rousseau, M.A., Persohn, S., Campana, S., Perrin, G., Skalli, W.: Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation. Eur. J. Orthop. Surg. Traumatol. 25(Suppl 1), S155-165 (2015)CrossRef
2.
Zurück zum Zitat Barrey, C., Campana, S., Persohn, S., Perrin, G., Skalli, W. (2012). Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: An in vitro investigation. European Spine Journal, 21(3), 432–442. Barrey, C., Campana, S., Persohn, S., Perrin, G., Skalli, W. (2012). Cervical disc prosthesis versus arthrodesis using one-level, hybrid and two-level constructs: An in vitro investigation. European Spine Journal, 21(3), 432–442.
3.
Zurück zum Zitat Bell, K.M., Debski, R.E., Sowa, G.A., Kang, J.D., Tashman, S.: Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. J. Biomech. 18(87), 107–113 (2019)CrossRef Bell, K.M., Debski, R.E., Sowa, G.A., Kang, J.D., Tashman, S.: Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. J. Biomech. 18(87), 107–113 (2019)CrossRef
4.
Zurück zum Zitat Choi, H., Purushothaman, Y., Baisden, J, Yoganandan, N.: Unique biomechanical signatures of Bryan, Prodisc C, and Prestige LP cervical disc replacements: a finite element modelling study. Eur. Spine. J. (2019) Choi, H., Purushothaman, Y., Baisden, J, Yoganandan, N.: Unique biomechanical signatures of Bryan, Prodisc C, and Prestige LP cervical disc replacements: a finite element modelling study. Eur. Spine. J. (2019)
5.
Zurück zum Zitat Du, C.F. et al.: The biomechanical response of cervical spine under different follower loads. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA) pp. 360–364 (2019) Du, C.F. et al.: The biomechanical response of cervical spine under different follower loads. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA) pp. 360–364 (2019)
6.
Zurück zum Zitat John, J.D., Saravana Kumar, G., Yoganandan, N.: Cervical spine morphology and ligament property variations: a finite element study of their influence on sagittal bending characteristics. J. Biomech. 85, 18–26 (2019)CrossRef John, J.D., Saravana Kumar, G., Yoganandan, N.: Cervical spine morphology and ligament property variations: a finite element study of their influence on sagittal bending characteristics. J. Biomech. 85, 18–26 (2019)CrossRef
7.
Zurück zum Zitat Kopperdahl, D.L., Keaveny, T.M.: Yield strain behavior of trabecular bone. J Biomech. 31(7), 601–608 (1998) Kopperdahl, D.L., Keaveny, T.M.: Yield strain behavior of trabecular bone. J Biomech. 31(7), 601–608 (1998)
8.
Zurück zum Zitat Kumaresan, S., Yoganandan, N., Pintar, F.A., Maiman, D.J., Kuppa, S.: Biomechanical study of pediatric human cervical spine: a finite element approach. J. Biomech. Eng. 122(1), 60–71 (2000) Kumaresan, S., Yoganandan, N., Pintar, F.A., Maiman, D.J., Kuppa, S.: Biomechanical study of pediatric human cervical spine: a finite element approach. J. Biomech. Eng. 122(1), 60–71 (2000)
9.
Zurück zum Zitat Mattucci, S.F.E., Moulton, J.A., Chandrashekar, N., Cronin, D.S.: Strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10, 216–226 (2012)CrossRef Mattucci, S.F.E., Moulton, J.A., Chandrashekar, N., Cronin, D.S.: Strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10, 216–226 (2012)CrossRef
10.
Zurück zum Zitat Mercer, S., Bogduk, N.: The ligaments and annulus fibrosus of human adult cervical intervertebral discs. Spine (Phila Pa 1976) 24(7), 619–626; discussion 627–618 (1999) Mercer, S., Bogduk, N.: The ligaments and annulus fibrosus of human adult cervical intervertebral discs. Spine (Phila Pa 1976) 24(7), 619–626; discussion 627–618 (1999)
11.
Zurück zum Zitat Moore, R.: The vertebral end-plate: what do we know? E. Spine J. 9, 92 (2000) Moore, R.: The vertebral end-plate: what do we know? E. Spine J. 9, 92 (2000)
12.
Zurück zum Zitat Ng, H.W., Teo, E.C.: Influence of preload magnitudes and orientation angles on the cervical biomechanics: a finite element study. J. Spinal. Disord. Tech. 18, 72–79 (2005)CrossRef Ng, H.W., Teo, E.C.: Influence of preload magnitudes and orientation angles on the cervical biomechanics: a finite element study. J. Spinal. Disord. Tech. 18, 72–79 (2005)CrossRef
13.
Zurück zum Zitat Panjabi, M.M., Cholewicki, J., Nibu, K., et al.: Criticial load of the human cervical spine: an in vitro experimental study. Clin. Biomech. 13, 11–17 (1998)CrossRef Panjabi, M.M., Cholewicki, J., Nibu, K., et al.: Criticial load of the human cervical spine: an in vitro experimental study. Clin. Biomech. 13, 11–17 (1998)CrossRef
14.
Zurück zum Zitat Panzer, M.B., Cronin, D.S.: C4–C5 segment finite element model development, validation, and load-sharing investigation. J. Biomech. 42, 480–490 (2009)CrossRef Panzer, M.B., Cronin, D.S.: C4–C5 segment finite element model development, validation, and load-sharing investigation. J. Biomech. 42, 480–490 (2009)CrossRef
15.
Zurück zum Zitat Patwardhan, A.G., Meade, K.P., Lee, B.: A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles. J. Biomech. Eng. 123, 212–217 (2001)CrossRef Patwardhan, A.G., Meade, K.P., Lee, B.: A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles. J. Biomech. Eng. 123, 212–217 (2001)CrossRef
16.
Zurück zum Zitat Patwardhan, A.G., Havey, R.M., Ghanayem, A.J., Diener, H., Meade, K.P., Dunlap, B., Hodges, S.D.: Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine (Phila Pa 1976) 25, 1548–1554 (2000) Patwardhan, A.G., Havey, R.M., Ghanayem, A.J., Diener, H., Meade, K.P., Dunlap, B., Hodges, S.D.: Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine (Phila Pa 1976) 25, 1548–1554 (2000)
17.
Zurück zum Zitat Patwardhan, A.G., Havey, R.M., Meade, K.P., Lee, B., Dunlap, B.: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24, 1003–1009 (1999) Patwardhan, A.G., Havey, R.M., Meade, K.P., Lee, B., Dunlap, B.: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24, 1003–1009 (1999)
18.
Zurück zum Zitat Reilly, D.T., Burstein, A.H.: The elastic and ultimate properties of compact bone tissue. J. Biomech. 8(6), 393–405 (1975)CrossRef Reilly, D.T., Burstein, A.H.: The elastic and ultimate properties of compact bone tissue. J. Biomech. 8(6), 393–405 (1975)CrossRef
19.
Zurück zum Zitat Wheeldon, J.A., Pintar, F.A., Knowles, S., Yoganandan, N.: Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J. Biomech. 39(2), 375–380 (2006)CrossRef Wheeldon, J.A., Pintar, F.A., Knowles, S., Yoganandan, N.: Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine. J. Biomech. 39(2), 375–380 (2006)CrossRef
20.
Zurück zum Zitat Wheeldon, J.A., Stemper, B.D., Yoganandan, N., Pintar, F.A.: Validation of a finite element model of the young normal lower cervical spine. Ann. Biomed. Eng. 36(9), 1458–1469 (2008)CrossRef Wheeldon, J.A., Stemper, B.D., Yoganandan, N., Pintar, F.A.: Validation of a finite element model of the young normal lower cervical spine. Ann. Biomed. Eng. 36(9), 1458–1469 (2008)CrossRef
21.
Zurück zum Zitat Yamada, H.: Strength of biological materials. Williams and Wilkins (1970) Yamada, H.: Strength of biological materials. Williams and Wilkins (1970)
22.
Zurück zum Zitat Yoganandan, N., Kumaresan, S., Pintar, F.A.: Geometric and mechanical properties of human cervical spine ligaments. J. Biomech. Eng. 122, 623 (2000)CrossRef Yoganandan, N., Kumaresan, S., Pintar, F.A.: Geometric and mechanical properties of human cervical spine ligaments. J. Biomech. Eng. 122, 623 (2000)CrossRef
23.
Zurück zum Zitat Yoganandan, N., Kumaresan, S., Pintar, F.A.: ‘Biomechanics of the cervical spine. Part 2. Cervical spine soft tissue responses and biomechanical modeling.’ Clin. Biomech. 16(1), 1–27 (2001)CrossRef Yoganandan, N., Kumaresan, S., Pintar, F.A.: ‘Biomechanics of the cervical spine. Part 2. Cervical spine soft tissue responses and biomechanical modeling.’ Clin. Biomech. 16(1), 1–27 (2001)CrossRef
24.
Zurück zum Zitat Yoganandan N1, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, Paskoff G, Laud P.: Trabecular bone density of male human cervical and lumbar vertebrae. Bone 39(2), 336–44 (2006) Yoganandan N1, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, Paskoff G, Laud P.: Trabecular bone density of male human cervical and lumbar vertebrae. Bone 39(2), 336–44 (2006)
25.
Zurück zum Zitat Zhang, Q.H., Teo, E.C., Ng, H.W., Lee, V.S.: Finite element analysis of moment–rotation relationships for human cervical spine. J. Biomech. 39 Zhang, Q.H., Teo, E.C., Ng, H.W., Lee, V.S.: Finite element analysis of moment–rotation relationships for human cervical spine. J. Biomech. 39
Metadaten
Titel
Influence of Compressive Preloading on Range of Motion and Endplate Stresses in the Cervical Spine During Flexion/Extension
verfasst von
Srikanth Srinivasan
R. Deepak
P. Yuvaraj
D. Davidson Jebaseelan
Narayan Yoganandan
S. Rajasekaran
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-62045-5_12

Neuer Inhalt