Skip to main content
Erschienen in: Journal of Electronic Materials 6/2021

30.03.2021 | Original Research Article

Influence of HfAlOx in DC, RF and Microwave Noise Performance of Dual-Channel Single-Gate InAs MOSHEMT

verfasst von: R. Poornachandran, N. Mohankumar, R. Saravana Kumar, G. Sujatha, M. Girish Shankar

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper analyzes the effect of a HfAlOx dielectric in a dual-channel (DC)single-gate (SG) metal oxide semiconductor high-electron-mobility transistor (DCSG-MOSHEMT) on improving device performance metrics. The small-signal analog/RF and noise performance of the device are explored in detail. The physics-based TCAD simulator tool is utilized to characterize the device. A peak drain current of 1.52 mA/µm is achieved due to superior sheet carrier density (ns) of 1.5×1018 cm−3 and low ON resistance. Further, a high positive threshold voltage (VT) of 0.214 V and a peak transconductance of 1.8 ms/µm is achieved with HfAlOx as the dielectric. Moreover, high cutoff frequency (fT) of 530 GHz and maximum frequency of oscillation (fmax) of 840 GHz at Vds = 0.5 V is achieved. The device exhibits a minimum noise figure of 1.32 dB at Vgs = 0.3 V and Vds = 0.5 V. With low noise over a large bandwidth and high-frequency performance, this device can be utilized to design low-noise amplifiers (LNA) for broadband applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Venkatesh, M. Suguna, and N.B. Balamurugan, J. Electron. Mater. 48, 6724 (2019).CrossRef M. Venkatesh, M. Suguna, and N.B. Balamurugan, J. Electron. Mater. 48, 6724 (2019).CrossRef
2.
Zurück zum Zitat M. Venkatesh, M. Suguna, and N.B. Balamurugan, Silicon 12, 2869 (2020).CrossRef M. Venkatesh, M. Suguna, and N.B. Balamurugan, Silicon 12, 2869 (2020).CrossRef
3.
Zurück zum Zitat K. Jena, R. Swain, and T.R. Lenka, Int. J. Numer. Model. Electron. Netw. Devices Fields 29, 83 (2016).CrossRef K. Jena, R. Swain, and T.R. Lenka, Int. J. Numer. Model. Electron. Netw. Devices Fields 29, 83 (2016).CrossRef
4.
Zurück zum Zitat Preethi, S., & Balamurugan, N. B., Analytical Modeling of Surrounding Gate Junctionless MOSFET Using Finite Differentiation Method. Silicon (2020). Preethi, S., & Balamurugan, N. B., Analytical Modeling of Surrounding Gate Junctionless MOSFET Using Finite Differentiation Method. Silicon (2020).
5.
Zurück zum Zitat X. Tan, X.-Y. Zhou, H.-Y. Guo, G.-D. Gu, Y.-G. Wang, X.-B. Song, J.-Y. Yin, Y.-J. Lv, and Z.-H. Feng, Chinese Phys. Lett. 33, 98501 (2016).CrossRef X. Tan, X.-Y. Zhou, H.-Y. Guo, G.-D. Gu, Y.-G. Wang, X.-B. Song, J.-Y. Yin, Y.-J. Lv, and Z.-H. Feng, Chinese Phys. Lett. 33, 98501 (2016).CrossRef
6.
Zurück zum Zitat S. Yadav, A. Kumar, X.S. Nguyen, K.H. Lee, Z. Liu, W. Xing, S. Masudy-Panah, K. Lee, C.S. Tan, E.A. Fitzgerald, D.A. Antoniadis, Y. Yeo, X. Gong, High mobility In0.30Ga0.70As MOSHEMTs on low threading dislocation density 200 mm Si substrates: A technology enabler towards heterogeneous integration of low noise and medium power amplifiers with Si CMOS, in: 2017 IEEE Int. Electron Devices Meet., 2017: p. 17.4.1-17.4.4. S. Yadav, A. Kumar, X.S. Nguyen, K.H. Lee, Z. Liu, W. Xing, S. Masudy-Panah, K. Lee, C.S. Tan, E.A. Fitzgerald, D.A. Antoniadis, Y. Yeo, X. Gong, High mobility In0.30Ga0.70As MOSHEMTs on low threading dislocation density 200 mm Si substrates: A technology enabler towards heterogeneous integration of low noise and medium power amplifiers with Si CMOS, in: 2017 IEEE Int. Electron Devices Meet., 2017: p. 17.4.1-17.4.4.
7.
Zurück zum Zitat J. Ajayan, T.D. Subash, and K. Dheena, Superlattices Microstruct. 109, 183 (2017).CrossRef J. Ajayan, T.D. Subash, and K. Dheena, Superlattices Microstruct. 109, 183 (2017).CrossRef
8.
Zurück zum Zitat S. Adak, S.K. Swain, A. Singh, H. Pardeshi, S.K. Pati, and C.K. Sarkar, Phys. E Low-Dimensional Syst. Nanostruct. 64, 152 (2014).CrossRef S. Adak, S.K. Swain, A. Singh, H. Pardeshi, S.K. Pati, and C.K. Sarkar, Phys. E Low-Dimensional Syst. Nanostruct. 64, 152 (2014).CrossRef
9.
Zurück zum Zitat R. Saravana Kumar, A. Mohanbabu, N. Mohankumar, and D. Godwin Raj, Int. J. Electron. 105, 446 (2017). R. Saravana Kumar, A. Mohanbabu, N. Mohankumar, and D. Godwin Raj, Int. J. Electron. 105, 446 (2017).
10.
Zurück zum Zitat R. Poornachandran, N. Mohankumar, R. SaravanaKumar, and G. Sujatha, Int. J. Numer. Model. 32, e2625 (2019). R. Poornachandran, N. Mohankumar, R. SaravanaKumar, and G. Sujatha, Int. J. Numer. Model. 32, e2625 (2019).
11.
Zurück zum Zitat M.D. Lange, X.B. Mei, T.P. Chin, W.H. Yoshida, W.R. Deal, P. Liu, J. Lee, J.J. Uyeda, L. Dang, J. Wang, W. Liu, D.T. Li, M.E. Barsky, Y. Kim, V. Radisic, R. Lai, InAs/InGaAs composite-channel HEMT on InP: Tailoring InGaAs thickness for performance, in: 2008 20th Int. Conf. Indium Phosphide Relat. Mater. 2008: pp. 1–4. M.D. Lange, X.B. Mei, T.P. Chin, W.H. Yoshida, W.R. Deal, P. Liu, J. Lee, J.J. Uyeda, L. Dang, J. Wang, W. Liu, D.T. Li, M.E. Barsky, Y. Kim, V. Radisic, R. Lai, InAs/InGaAs composite-channel HEMT on InP: Tailoring InGaAs thickness for performance, in: 2008 20th Int. Conf. Indium Phosphide Relat. Mater. 2008: pp. 1–4.
12.
Zurück zum Zitat F. Bonani, S.D. Guerrieri, G. Ghione, and M. Pirola, IEEE Trans. Electron. Devices 48, 966 (2001).CrossRef F. Bonani, S.D. Guerrieri, G. Ghione, and M. Pirola, IEEE Trans. Electron. Devices 48, 966 (2001).CrossRef
13.
Zurück zum Zitat S. Karboyan, J.G. Tartarin, M. Rzin, L. Brunel, A. Curutchet, N. Malbert, N. Labat, D. Carisetti, B. Lambert, M. Mermoux, E. Romain-Latu, F. Thomas, C. Bouexière, and C. Moreau, Microelectron. Reliab. 53, 1491 (2013).CrossRef S. Karboyan, J.G. Tartarin, M. Rzin, L. Brunel, A. Curutchet, N. Malbert, N. Labat, D. Carisetti, B. Lambert, M. Mermoux, E. Romain-Latu, F. Thomas, C. Bouexière, and C. Moreau, Microelectron. Reliab. 53, 1491 (2013).CrossRef
15.
Zurück zum Zitat D. Nirmal, L. Arivazhagan, A.S. Augustine Fletcher, J. Ajayan, and P. Prajoon, Superlattices Microstruct. 113, 810 (2018).CrossRef D. Nirmal, L. Arivazhagan, A.S. Augustine Fletcher, J. Ajayan, and P. Prajoon, Superlattices Microstruct. 113, 810 (2018).CrossRef
16.
Zurück zum Zitat S. Dayal, S. Kumar, S. Kumar, H. Arora, R. Laishram, R.K. Chaubey, and B.K. Sehgal, Passivation of AlGaN/GaN HEMT by Silicon Nitride BT, Physics of Semiconductor Devices. ed. V.K. Jain, and A. Verma (Cham: Springer, 2014), pp. 141–143.CrossRef S. Dayal, S. Kumar, S. Kumar, H. Arora, R. Laishram, R.K. Chaubey, and B.K. Sehgal, Passivation of AlGaN/GaN HEMT by Silicon Nitride BT, Physics of Semiconductor Devices. ed. V.K. Jain, and A. Verma (Cham: Springer, 2014), pp. 141–143.CrossRef
17.
Zurück zum Zitat Y. Zhong, S. Sun, W. Wong, H. Wang, X. Liu, Z. Duan, P. Ding, and Z. Jin, Front. Inf. Technol. Electron. Eng. 18, 1180 (2017).CrossRef Y. Zhong, S. Sun, W. Wong, H. Wang, X. Liu, Z. Duan, P. Ding, and Z. Jin, Front. Inf. Technol. Electron. Eng. 18, 1180 (2017).CrossRef
18.
Zurück zum Zitat M. Daoudi, I. Dhifallah, A. Ouerghi, and R. Chtourou, Superlattices Microstruct. 51, 497 (2012).CrossRef M. Daoudi, I. Dhifallah, A. Ouerghi, and R. Chtourou, Superlattices Microstruct. 51, 497 (2012).CrossRef
19.
Zurück zum Zitat A.B. Khan, M.J. Siddiqui, and S.G. Anjum, Mater. Today Proc. 4, 10341 (2017).CrossRef A.B. Khan, M.J. Siddiqui, and S.G. Anjum, Mater. Today Proc. 4, 10341 (2017).CrossRef
20.
Zurück zum Zitat TCAD Sentaurus, Sdevice User Guide, ver.G-2016, Synopsys. TCAD Sentaurus, Sdevice User Guide, ver.G-2016, Synopsys.
21.
Zurück zum Zitat J. Ge, H.G. Liu, Y.B. Su, Y.X. Cao, and Z. Jin, Chin. Phys. B. 21, 058501 (2012).CrossRef J. Ge, H.G. Liu, Y.B. Su, Y.X. Cao, and Z. Jin, Chin. Phys. B. 21, 058501 (2012).CrossRef
22.
Zurück zum Zitat G. Ghione, and F. Filicori, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12, 425 (1993).CrossRef G. Ghione, and F. Filicori, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12, 425 (1993).CrossRef
23.
Zurück zum Zitat C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164 (1988).CrossRef C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164 (1988).CrossRef
24.
Zurück zum Zitat D.K. Panda, and T.R. Lenka, Superlattices Microstruct. 112, 374 (2017).CrossRef D.K. Panda, and T.R. Lenka, Superlattices Microstruct. 112, 374 (2017).CrossRef
25.
Zurück zum Zitat T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, Proc. IEEE. 91, 251 (2003).CrossRef T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, Proc. IEEE. 91, 251 (2003).CrossRef
26.
Zurück zum Zitat S. Datta, K. Roenker, M. Cahay, and W. Stanchina, Solid-State Electron. 43, 73 (1999).CrossRef S. Datta, K. Roenker, M. Cahay, and W. Stanchina, Solid-State Electron. 43, 73 (1999).CrossRef
27.
Zurück zum Zitat S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, ISBN:9783709105603 (2004). S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, ISBN:9783709105603 (2004).
28.
Zurück zum Zitat D. Kim, and J.A. del Alamo, IEEE Electron. Device Lett. 31, 806 (2010).CrossRef D. Kim, and J.A. del Alamo, IEEE Electron. Device Lett. 31, 806 (2010).CrossRef
29.
Zurück zum Zitat M. Bhattacharya, J. Jogi, R.S. Gupta, and M. Gupta, IEEE Trans. Electron. Devices 59, 1644 (2012).CrossRef M. Bhattacharya, J. Jogi, R.S. Gupta, and M. Gupta, IEEE Trans. Electron. Devices 59, 1644 (2012).CrossRef
30.
Zurück zum Zitat N. Mohankumar, B. Syamal, and C.K. Sarkar, IEEE Trans. Electron. Devices 57, 820 (2010).CrossRef N. Mohankumar, B. Syamal, and C.K. Sarkar, IEEE Trans. Electron. Devices 57, 820 (2010).CrossRef
31.
Zurück zum Zitat C.I. Kuo, H.T. Hsu, C.Y. Wu, E.Y. Chang, Y.L. Chen, and W.C. Lim, Microelectron. Eng. 87, 2625 (2010).CrossRef C.I. Kuo, H.T. Hsu, C.Y. Wu, E.Y. Chang, Y.L. Chen, and W.C. Lim, Microelectron. Eng. 87, 2625 (2010).CrossRef
32.
Zurück zum Zitat M. Sánden, O. Marinov, M.J. Deen, and M. Ostling, IEEE Trans. Electron. Devices 49, 514 (2002).CrossRef M. Sánden, O. Marinov, M.J. Deen, and M. Ostling, IEEE Trans. Electron. Devices 49, 514 (2002).CrossRef
34.
Zurück zum Zitat S.D. Nsele, J.G. Tartarin, L. Escotte, S. Piotrowicz, S. Delage, InAlN/GaN HEMT technology for robust HF receivers: An overview of the HF and LF noise performances, 2015 Int. Conf. Noise Fluctuations, ICNF 2015 (2015). S.D. Nsele, J.G. Tartarin, L. Escotte, S. Piotrowicz, S. Delage, InAlN/GaN HEMT technology for robust HF receivers: An overview of the HF and LF noise performances, 2015 Int. Conf. Noise Fluctuations, ICNF 2015 (2015).
35.
Zurück zum Zitat S.K. Saha, Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond (New York: CRC Press/Taylor & Francis, 2015), pp. 41–42 S.K. Saha, Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond (New York: CRC Press/Taylor & Francis, 2015), pp. 41–42
36.
Zurück zum Zitat R. Rengel, J. Mateos, D. Pardo, T. González, and M.J. Martín, Semicond. Sci. Technol. 16, 939 (2001).CrossRef R. Rengel, J. Mateos, D. Pardo, T. González, and M.J. Martín, Semicond. Sci. Technol. 16, 939 (2001).CrossRef
37.
Zurück zum Zitat D.E.R. Ziel, Noise in Solid State Devices and Circuits (New York: Wiley-Interscience, 1978). D.E.R. Ziel, Noise in Solid State Devices and Circuits (New York: Wiley-Interscience, 1978).
38.
Zurück zum Zitat A. Balandin, S.V. Morozov, S. Cai, R. Li, K.L. Wang, G. Wijeratne, and C.R. Viswanathan, IEEE Trans. Microw. Theory Tech. 47, 1413 (1999).CrossRef A. Balandin, S.V. Morozov, S. Cai, R. Li, K.L. Wang, G. Wijeratne, and C.R. Viswanathan, IEEE Trans. Microw. Theory Tech. 47, 1413 (1999).CrossRef
39.
Zurück zum Zitat K. Hartmann, and M.J.O. Strutt, IEEE Trans. Electron. Devices. 20, 874 (1973).CrossRef K. Hartmann, and M.J.O. Strutt, IEEE Trans. Electron. Devices. 20, 874 (1973).CrossRef
40.
Zurück zum Zitat S.S.H. Hsu, P. Valizadeh, D. Pavlidis, J.S. Moon, M. Micovic, D. Wong, T. Hussain, Characterization and analysis of gate and drain low-frequency noise in AlGaN/GaN HEMTs, in Proceedings. IEEE Lester Eastman Conf. High Perform. Devices, pp. 453–460 (2002). S.S.H. Hsu, P. Valizadeh, D. Pavlidis, J.S. Moon, M. Micovic, D. Wong, T. Hussain, Characterization and analysis of gate and drain low-frequency noise in AlGaN/GaN HEMTs, in Proceedings. IEEE Lester Eastman Conf. High Perform. Devices, pp. 453–460 (2002).
41.
Zurück zum Zitat Y. Zhu, C. Wei, O. Klimashov, B. Li, C. Zhang and Y. Tkachenko, Gate Width Dependence of Noise Parameters and Scalable Noise Model for HEMTs, in 2008 European Microwave Integrated Circuit Conference, Amsterdam, pp. 298–301 (2008). Y. Zhu, C. Wei, O. Klimashov, B. Li, C. Zhang and Y. Tkachenko, Gate Width Dependence of Noise Parameters and Scalable Noise Model for HEMTs, in 2008 European Microwave Integrated Circuit Conference, Amsterdam, pp. 298–301 (2008).
42.
Zurück zum Zitat S. Lee, K.J. Webb, V. Tilak, and L.F. Eastman, IEEE Trans. Microwave Theory Tech. 51, 1567 (2003).CrossRef S. Lee, K.J. Webb, V. Tilak, and L.F. Eastman, IEEE Trans. Microwave Theory Tech. 51, 1567 (2003).CrossRef
43.
Zurück zum Zitat J. Lee, A. Kuliev, V. Kumar, R. Schwindt, and I. Adesida, IEEE Microwave Wirel. Compon. Lett. 14, 259 (2004).CrossRef J. Lee, A. Kuliev, V. Kumar, R. Schwindt, and I. Adesida, IEEE Microwave Wirel. Compon. Lett. 14, 259 (2004).CrossRef
44.
Zurück zum Zitat R. Poornachandran, N. Mohankumar, R. Saravanakumar, and G. Sujatha, J. Comput. Electron. 18, 1280 (2019).CrossRef R. Poornachandran, N. Mohankumar, R. Saravanakumar, and G. Sujatha, J. Comput. Electron. 18, 1280 (2019).CrossRef
45.
Zurück zum Zitat A. Tessmann, A. Leuther, F. Heinz, F. Bernhardt, L. John, H. Massler, L. Czornomaz, and T. Merkle, IEEE J. Solid-State Circuits 54, 2411 (2019).CrossRef A. Tessmann, A. Leuther, F. Heinz, F. Bernhardt, L. John, H. Massler, L. Czornomaz, and T. Merkle, IEEE J. Solid-State Circuits 54, 2411 (2019).CrossRef
46.
Zurück zum Zitat J. Ajayan, T. Ravichandran, P. Mohankumar et al., Semiconductor 52, 1991 (2018).CrossRef J. Ajayan, T. Ravichandran, P. Mohankumar et al., Semiconductor 52, 1991 (2018).CrossRef
47.
Zurück zum Zitat X. Zhou, Q. Li, C.W. Tang, and K.M. Lau, IEEE Electron. Device Lett. 33, 1384 (2012).CrossRef X. Zhou, Q. Li, C.W. Tang, and K.M. Lau, IEEE Electron. Device Lett. 33, 1384 (2012).CrossRef
48.
Zurück zum Zitat P. Chang, H.-C. Chiu, T.-D. Lin et al., Appl. Phys. Express. 4, 114202 (2011).CrossRef P. Chang, H.-C. Chiu, T.-D. Lin et al., Appl. Phys. Express. 4, 114202 (2011).CrossRef
49.
Zurück zum Zitat D.H. Kim, T. Kim, M. Urteaga, and B. Brar, Electron. Lett. 48, 1430 (2012).CrossRef D.H. Kim, T. Kim, M. Urteaga, and B. Brar, Electron. Lett. 48, 1430 (2012).CrossRef
50.
Zurück zum Zitat R. Terao, T. Kanazawa, S. Ikeda, Y. Yonai, A. Kato, and Y. Miyamoto, Appl. Phys. Express. 4, 99202 (2011).CrossRef R. Terao, T. Kanazawa, S. Ikeda, Y. Yonai, A. Kato, and Y. Miyamoto, Appl. Phys. Express. 4, 99202 (2011).CrossRef
51.
Zurück zum Zitat Q. Li, X. Zhou, C.W. Tang, and K.M. Lau, IEEE Electron. Device Lett. 33, 1246 (2012).CrossRef Q. Li, X. Zhou, C.W. Tang, and K.M. Lau, IEEE Electron. Device Lett. 33, 1246 (2012).CrossRef
Metadaten
Titel
Influence of HfAlOx in DC, RF and Microwave Noise Performance of Dual-Channel Single-Gate InAs MOSHEMT
verfasst von
R. Poornachandran
N. Mohankumar
R. Saravana Kumar
G. Sujatha
M. Girish Shankar
Publikationsdatum
30.03.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08845-4

Weitere Artikel der Ausgabe 6/2021

Journal of Electronic Materials 6/2021 Zur Ausgabe

Neuer Inhalt