Skip to main content
Erschienen in: Journal of Materials Science 20/2017

09.06.2017 | Mechanochemical Synthesis

Influence of high-pressure torsion and hot rolling on the microstructure and mechanical properties of aluminum–fullerene composites

verfasst von: Aeran Roh, Ho Yong Um, Daeyoung Kim, Seungjin Nam, Hyoung Seop Kim, Hyunjoo Choi

Erschienen in: Journal of Materials Science | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we investigate the impacts of working process, high-pressure torsion (HPT) and hot rolling (HR) on the microstructure and mechanical performance of aluminum-based nanocomposites containing fullerenes. HPT caused severe plastic deformations that generate numerous dislocations and lattice strains, and this stimulated the formation of aluminum carbides (Al4C3) and reduced the hardness during heat treatment. In contrast, the HRed specimens experienced dynamic recovery, and their initial dislocation densities and lattice strains were lower than those of the HPTed specimens. Thus, the HRed composites formed supersaturated aluminum phases as well as aluminum carbides during the heat treatment. The supersaturated phases provided high-density dislocations and severe lattice strains, resulting in an increase in the hardness during the heat treatment. This comparison suggests that the mechanical properties of aluminum–fullerene composites can be controlled by working processes in practical situations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tokunaga T, Kaneko K, Sato K, Horita Z (2008) Microstructure and mechanical properties of aluminum–fullerene composite fabricated by high pressure torsion. Scr Mater 58(9):735–738CrossRef Tokunaga T, Kaneko K, Sato K, Horita Z (2008) Microstructure and mechanical properties of aluminum–fullerene composite fabricated by high pressure torsion. Scr Mater 58(9):735–738CrossRef
2.
Zurück zum Zitat Khalid FA, Beffort O, Klotz UE, Keller BA, Gasser P, Vaucher S (2003) Study of microstructure and interfaces in an aluminum–C60 composites material. Acta Mater 51:4575–4582CrossRef Khalid FA, Beffort O, Klotz UE, Keller BA, Gasser P, Vaucher S (2003) Study of microstructure and interfaces in an aluminum–C60 composites material. Acta Mater 51:4575–4582CrossRef
4.
Zurück zum Zitat Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J Mater Sci Technol 30(7):649–655CrossRef Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J Mater Sci Technol 30(7):649–655CrossRef
5.
Zurück zum Zitat Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528(27):7933–7937CrossRef Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528(27):7933–7937CrossRef
6.
Zurück zum Zitat Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66(8):594–597CrossRef Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66(8):594–597CrossRef
7.
Zurück zum Zitat Alhashmy HA, Nganbe M (2015) Lamincate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater Des 67:154–158CrossRef Alhashmy HA, Nganbe M (2015) Lamincate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater Des 67:154–158CrossRef
8.
9.
Zurück zum Zitat Peat T, Galloway A, Toumpis A, Mcnutt P, Iqbal N (2017) The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing. Appl Surf Sci 396(28):1635–1648CrossRef Peat T, Galloway A, Toumpis A, Mcnutt P, Iqbal N (2017) The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing. Appl Surf Sci 396(28):1635–1648CrossRef
10.
Zurück zum Zitat Bakshi SR, Singh V, Seal S, Agarwal A (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203(10–11):1544–1554CrossRef Bakshi SR, Singh V, Seal S, Agarwal A (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203(10–11):1544–1554CrossRef
11.
Zurück zum Zitat Hwang J, Yoon T, Jin SH, Lee J, Kim TS (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724–6729CrossRef Hwang J, Yoon T, Jin SH, Lee J, Kim TS (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724–6729CrossRef
12.
Zurück zum Zitat Tu JF, Rajule N, Molian P, Liu Y (2016) Laser synthesis of a copper-single-walled carbon nanotube nanocomposite via molecular-level mixing and non-equilibrium solidification. J Phys D Appl Phys 49:495301–495311CrossRef Tu JF, Rajule N, Molian P, Liu Y (2016) Laser synthesis of a copper-single-walled carbon nanotube nanocomposite via molecular-level mixing and non-equilibrium solidification. J Phys D Appl Phys 49:495301–495311CrossRef
13.
Zurück zum Zitat Pavithra CLP, Sarada BV, Rajulapati KV, Rao TN, Sundararajan G (2014) A new electrochemical approach for the synthesis of copper–graphene nanocomposite foils with high hardness. Sci Rep 4:4049–4055CrossRef Pavithra CLP, Sarada BV, Rajulapati KV, Rao TN, Sundararajan G (2014) A new electrochemical approach for the synthesis of copper–graphene nanocomposite foils with high hardness. Sci Rep 4:4049–4055CrossRef
14.
Zurück zum Zitat Zhang F, Hou C, Zhang Q, Wang H, Li Y (2012) Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Mater Chem Phys 135(2–3):826–831CrossRef Zhang F, Hou C, Zhang Q, Wang H, Li Y (2012) Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Mater Chem Phys 135(2–3):826–831CrossRef
15.
Zurück zum Zitat Kwon H, Mondal J, AlOgab KA, Sammelselg V, Takamichi M (2017) Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J Alloys Compd 698:807–813CrossRef Kwon H, Mondal J, AlOgab KA, Sammelselg V, Takamichi M (2017) Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J Alloys Compd 698:807–813CrossRef
16.
Zurück zum Zitat Liu J, Khan U, Coleman J, Fernandez B, Rodriguez P, Naher S, Brabazon D (2016) Graphene oxide and graphene nanosheet reinforced aluminum matrix composites: powder synthesis and prepared composite characteristics. Mater Des 94:87–94CrossRef Liu J, Khan U, Coleman J, Fernandez B, Rodriguez P, Naher S, Brabazon D (2016) Graphene oxide and graphene nanosheet reinforced aluminum matrix composites: powder synthesis and prepared composite characteristics. Mater Des 94:87–94CrossRef
17.
Zurück zum Zitat Monje IE, Louis E, Molina JM (2016) Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant of oscillating temperature in a humid environment. J Mater Sci 51(17):8027–8036. doi:10.1007/s10853-016-0072-8 CrossRef Monje IE, Louis E, Molina JM (2016) Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant of oscillating temperature in a humid environment. J Mater Sci 51(17):8027–8036. doi:10.​1007/​s10853-016-0072-8 CrossRef
18.
Zurück zum Zitat Zheng J, Li Q, Liu W, Shu G (2016) Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J Compos Mater 50(27):3843–3852CrossRef Zheng J, Li Q, Liu W, Shu G (2016) Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J Compos Mater 50(27):3843–3852CrossRef
19.
Zurück zum Zitat Zhang J, Liu S, Lu Y, Yin X, Zhang Y, Li T (2016) Liquid rolling of woven carbon fibers reinforced Al5083-matrix composites. Mater Des 95:89–96CrossRef Zhang J, Liu S, Lu Y, Yin X, Zhang Y, Li T (2016) Liquid rolling of woven carbon fibers reinforced Al5083-matrix composites. Mater Des 95:89–96CrossRef
20.
Zurück zum Zitat Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Rotundo F, Toschi S, Arvind Singh R (2017) Aluminum and magnesium metal matrix nanocomposites. Springer Nature Singapore Pte Ltd., SingaporeCrossRef Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Rotundo F, Toschi S, Arvind Singh R (2017) Aluminum and magnesium metal matrix nanocomposites. Springer Nature Singapore Pte Ltd., SingaporeCrossRef
21.
Zurück zum Zitat Zhang H, Xu C, Xiao W, Ameyama K, Ma C (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng A 658:8–15CrossRef Zhang H, Xu C, Xiao W, Ameyama K, Ma C (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng A 658:8–15CrossRef
23.
Zurück zum Zitat Raviathul Basariya M, Srivastava VC, Mukhopadhyay NK (2014) Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater Des 64:542–549CrossRef Raviathul Basariya M, Srivastava VC, Mukhopadhyay NK (2014) Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater Des 64:542–549CrossRef
24.
Zurück zum Zitat Perez-Bustamante R, Gomez-Esparza CD, Estrada-Guel I, Miki-Yoshida M, Licea-Jimenez L, Perez-Garcia SA, Martinez-Sanchez R (2009) Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater Sci Eng A 502(1–2):159–163CrossRef Perez-Bustamante R, Gomez-Esparza CD, Estrada-Guel I, Miki-Yoshida M, Licea-Jimenez L, Perez-Garcia SA, Martinez-Sanchez R (2009) Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater Sci Eng A 502(1–2):159–163CrossRef
25.
Zurück zum Zitat Yolshina LA, Muradymov RV, Korsun IV, Yakovlev GA, Smirnov SV (2016) Novel aluminum–graphene and aluminum–graphite metallic composite materials: synthesis and properties. J Alloys Compd 663:449–459CrossRef Yolshina LA, Muradymov RV, Korsun IV, Yakovlev GA, Smirnov SV (2016) Novel aluminum–graphene and aluminum–graphite metallic composite materials: synthesis and properties. J Alloys Compd 663:449–459CrossRef
26.
Zurück zum Zitat Isaza C, Sierra G, Meza JM (2016) A novel technique for production of metal matrix composites reinforced with carbon nanotubes. J Manuf Sci Eng 138(2):024501–024505CrossRef Isaza C, Sierra G, Meza JM (2016) A novel technique for production of metal matrix composites reinforced with carbon nanotubes. J Manuf Sci Eng 138(2):024501–024505CrossRef
27.
Zurück zum Zitat Zhou W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A (2017) Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater 125:369–376CrossRef Zhou W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A (2017) Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater 125:369–376CrossRef
28.
Zurück zum Zitat Zhou W, Bang S, Kurita H, Miyazaki T, Fan Y, Kawasaki A (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96:919–928CrossRef Zhou W, Bang S, Kurita H, Miyazaki T, Fan Y, Kawasaki A (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96:919–928CrossRef
29.
Zurück zum Zitat Choi HJ, Shin JH, Bae DH (2010) Self-assembled network structures in Al/C60 composites. Carbon 48(13):3700–3707CrossRef Choi HJ, Shin JH, Bae DH (2010) Self-assembled network structures in Al/C60 composites. Carbon 48(13):3700–3707CrossRef
30.
Zurück zum Zitat Starink MJ, Cheng X, Yang S (2013) Hardening of pure metals by high-pressure torsion: a physically based model employing volume-averaged defect evolutions. Acta Mater 61:183–192CrossRef Starink MJ, Cheng X, Yang S (2013) Hardening of pure metals by high-pressure torsion: a physically based model employing volume-averaged defect evolutions. Acta Mater 61:183–192CrossRef
31.
Zurück zum Zitat Ito Y, Edalati K, Horita Z (2017) High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall–Petch relationship. Mater Sci Eng A 679:428–434CrossRef Ito Y, Edalati K, Horita Z (2017) High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall–Petch relationship. Mater Sci Eng A 679:428–434CrossRef
32.
Zurück zum Zitat Abolhasani A, Zarei-Hanzake A, Abedi HR, Rokni MR (2012) The room temperature mechanical properties of hot rolled 7075 aluminum alloy. Mater Des 34:631–636CrossRef Abolhasani A, Zarei-Hanzake A, Abedi HR, Rokni MR (2012) The room temperature mechanical properties of hot rolled 7075 aluminum alloy. Mater Des 34:631–636CrossRef
33.
Zurück zum Zitat Zhou X, Liu Y, Thompson GE, Scamans GM, Skeldon P, Hunter JA (2011) Near-surface deformed layers on rolled aluminum alloys. Metall Mater Trans A 42(5):1373–1385CrossRef Zhou X, Liu Y, Thompson GE, Scamans GM, Skeldon P, Hunter JA (2011) Near-surface deformed layers on rolled aluminum alloys. Metall Mater Trans A 42(5):1373–1385CrossRef
35.
Zurück zum Zitat Choi HJ, Lee SW, Park JS, Bae DH (2008) Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr Mater 59(10):1123–1126CrossRef Choi HJ, Lee SW, Park JS, Bae DH (2008) Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders. Scr Mater 59(10):1123–1126CrossRef
36.
Zurück zum Zitat Shin SE, Bae DH (2015) Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos Part A 98:42–47CrossRef Shin SE, Bae DH (2015) Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos Part A 98:42–47CrossRef
37.
Zurück zum Zitat Williamson GK, Hall WH (1954) The use of Fourier analysis in the interpretation of X-ray line broadening from cold-worked iron and molybdenum. Acta Crystallogr 1:574–581CrossRef Williamson GK, Hall WH (1954) The use of Fourier analysis in the interpretation of X-ray line broadening from cold-worked iron and molybdenum. Acta Crystallogr 1:574–581CrossRef
38.
Zurück zum Zitat Smallman RE, Westmacott KH (1957) Stacking faults in face-centered cubic metals and alloys. Philos Mag 2:669–683CrossRef Smallman RE, Westmacott KH (1957) Stacking faults in face-centered cubic metals and alloys. Philos Mag 2:669–683CrossRef
39.
Zurück zum Zitat Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr Mater 54(2):251–256CrossRef Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr Mater 54(2):251–256CrossRef
40.
Zurück zum Zitat Ungar T (2004) Microstructural parameters from X-ray diffraction peak broadening. Scr Mater 51(8):777–781CrossRef Ungar T (2004) Microstructural parameters from X-ray diffraction peak broadening. Scr Mater 51(8):777–781CrossRef
41.
Zurück zum Zitat Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater 1:45–49CrossRef Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater 1:45–49CrossRef
42.
Zurück zum Zitat Bethune DS, Meijer G, Tang WC, Rosen HJ, Golden WG, Seki H, Brown CA, de Vries MS (1991) Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem Phys Lett 179(1–2):181–186CrossRef Bethune DS, Meijer G, Tang WC, Rosen HJ, Golden WG, Seki H, Brown CA, de Vries MS (1991) Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem Phys Lett 179(1–2):181–186CrossRef
43.
Zurück zum Zitat Qiao L, Sun X, Yang Z, Wang X, Wang Q, He D (2013) Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon 54:29–35CrossRef Qiao L, Sun X, Yang Z, Wang X, Wang Q, He D (2013) Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon 54:29–35CrossRef
44.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41CrossRef
45.
Zurück zum Zitat Woo DJ, Bottolfson BA, Brewer LM, Hooper JP, Osswald S (2014) Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J Mater Res 29(22):2644–2656CrossRef Woo DJ, Bottolfson BA, Brewer LM, Hooper JP, Osswald S (2014) Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J Mater Res 29(22):2644–2656CrossRef
46.
Zurück zum Zitat Liu X, Liu Y, Ran X, An J, Cao Z (2006) Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying. Mater Charact 58(6):504–508CrossRef Liu X, Liu Y, Ran X, An J, Cao Z (2006) Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying. Mater Charact 58(6):504–508CrossRef
47.
Zurück zum Zitat Uglova VV, Cherendaa NN, Danilyukb AL, Rauschenbachc B (2000) Structural and phases composition changes in aluminum induced by carbon implantation. Surf Coat Technol 128–129:358–363CrossRef Uglova VV, Cherendaa NN, Danilyukb AL, Rauschenbachc B (2000) Structural and phases composition changes in aluminum induced by carbon implantation. Surf Coat Technol 128–129:358–363CrossRef
48.
Zurück zum Zitat Muche DNF, Drazin JW, Mardinly J, Dey S, Castro RHR (2017) Colossal grain boundary strengthening in ultrafine nanocrystalline oxides. Mater Lett 186:298–300CrossRef Muche DNF, Drazin JW, Mardinly J, Dey S, Castro RHR (2017) Colossal grain boundary strengthening in ultrafine nanocrystalline oxides. Mater Lett 186:298–300CrossRef
49.
Zurück zum Zitat Courtney TH (2005) Mechanical behavior of materials, 2nd edn. Waveland Press Inc., Long grove Courtney TH (2005) Mechanical behavior of materials, 2nd edn. Waveland Press Inc., Long grove
50.
Zurück zum Zitat Khan AS, Farrokh B, Takacs L (2008) Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater Sci Eng A 489(1–2):77–84CrossRef Khan AS, Farrokh B, Takacs L (2008) Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater Sci Eng A 489(1–2):77–84CrossRef
51.
Zurück zum Zitat Tabor D (1951) Hardness of metals. Clarendon Press, Oxford Tabor D (1951) Hardness of metals. Clarendon Press, Oxford
52.
Zurück zum Zitat Tokunaga T, Kaneko K, Horita Z (2008) Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Mater Sci Eng A 490(1–2):300–304CrossRef Tokunaga T, Kaneko K, Horita Z (2008) Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Mater Sci Eng A 490(1–2):300–304CrossRef
53.
Zurück zum Zitat Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminum composites. Compos Sci Technol 70(16):2237–2241CrossRef Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminum composites. Compos Sci Technol 70(16):2237–2241CrossRef
54.
Zurück zum Zitat Choi HJ (2013) Mechanical behavior of Al/C60-fullerenes nanocomposites. Compos Res 26:111–115CrossRef Choi HJ (2013) Mechanical behavior of Al/C60-fullerenes nanocomposites. Compos Res 26:111–115CrossRef
55.
Zurück zum Zitat Bagherpour E, Reihanian M, Miyamoto H (2017) Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress. J Mater Sci 52(6):3436–3446. doi:10.1007/s10853-016-0632-y CrossRef Bagherpour E, Reihanian M, Miyamoto H (2017) Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress. J Mater Sci 52(6):3436–3446. doi:10.​1007/​s10853-016-0632-y CrossRef
56.
Zurück zum Zitat Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55(15):5115–5121CrossRef Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55(15):5115–5121CrossRef
57.
Zurück zum Zitat Suguihiro NM, Xing YT, Haeussler D, Jaeger W, Smith DJ, Baggio-Saitovitch E, Solorzano IG (2014) Discontinuous reactions in melt-spun Cu–10 at. % Co alloys and their effect on magnetic anisotropy. J Mater Sci 49:6167–6179. doi:10.1007/s10853-014-8329-6 CrossRef Suguihiro NM, Xing YT, Haeussler D, Jaeger W, Smith DJ, Baggio-Saitovitch E, Solorzano IG (2014) Discontinuous reactions in melt-spun Cu–10 at. % Co alloys and their effect on magnetic anisotropy. J Mater Sci 49:6167–6179. doi:10.​1007/​s10853-014-8329-6 CrossRef
58.
Zurück zum Zitat Li SH, Chao CG (2004) Effect of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites. Metall Mater Trans A 35(7):2153–2160CrossRef Li SH, Chao CG (2004) Effect of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites. Metall Mater Trans A 35(7):2153–2160CrossRef
59.
Zurück zum Zitat George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminum (CNT/Al). Scr Mater 53(10):1159–1163CrossRef George R, Kashyap KT, Rahul R, Yamdagni S (2005) Strengthening in carbon nanotube/aluminum (CNT/Al). Scr Mater 53(10):1159–1163CrossRef
60.
Zurück zum Zitat Mehrer H (2007) Diffusion in solids: fundamentals, methods, diffusion-controlled processes. Springer, BerlinCrossRef Mehrer H (2007) Diffusion in solids: fundamentals, methods, diffusion-controlled processes. Springer, BerlinCrossRef
61.
Zurück zum Zitat Tapasa K, Osetsky YN, Bacon DJ (2007) Computer simulation of interaction of an edge dislocation with a carbon interstitial in α-iron and effects on glide. Acta Mater 55(1):93–104CrossRef Tapasa K, Osetsky YN, Bacon DJ (2007) Computer simulation of interaction of an edge dislocation with a carbon interstitial in α-iron and effects on glide. Acta Mater 55(1):93–104CrossRef
Metadaten
Titel
Influence of high-pressure torsion and hot rolling on the microstructure and mechanical properties of aluminum–fullerene composites
verfasst von
Aeran Roh
Ho Yong Um
Daeyoung Kim
Seungjin Nam
Hyoung Seop Kim
Hyunjoo Choi
Publikationsdatum
09.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1230-3

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science 20/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.