Skip to main content
Erschienen in: Journal of Polymer Research 10/2019

01.10.2019 | ORIGINAL PAPER

Influence of modified starch and nanoclay particles on crystallization and thermal degradation properties of cross-linked poly(lactic acid)

verfasst von: Mohammad Shayan, Hamed Azizi, Ismaeil Ghasemi, Mohammad Karrabi

Erschienen in: Journal of Polymer Research | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cross-linked poly(lactic acid) (PLA)/ maleated thermoplastic starch (MTPS)/ montmorillonite (MMT) composites were prepared by melt blending. Crosslinking was conducted by adding di-cumyl peroxide (DCP) in the presence of triallyl isocyanurate (TAIC) as co-agent. MTPS was produced by grafting maleic anhydride (MA) to thermoplastic starch in an internal mixer. DSC results demonstrated that crosslinking of PLA increased glass transition temperature (Tg) and reduced crystallinity. Presence of MTPS generally declined crystallinity despite of the relative effectiveness of nanoclay particles on enhancing the crystallinity of PLA matrix. Crosslinking of PLA caused significant improvement of thermal stability. Addition of MTPS decreased thermal stability of PLA. Presence of nanoclay enhanced the maximum temperature in final thermal degradation step. The non-isothermal kinetics of the degradation processes was assessed using two different integral methods. Results showed that crosslinking increased decomposition activation energy of PLA. However, addition of MTPS and nanoclay caused to decrease of activation energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Krishnan S, Pandey P, Mohanty S, Nayak SK (2015) Toughening of Polylactic acid: an overview of research progress. Polym-Plast Technol Eng Krishnan S, Pandey P, Mohanty S, Nayak SK (2015) Toughening of Polylactic acid: an overview of research progress. Polym-Plast Technol Eng
2.
Zurück zum Zitat Kfoury G, Raquez J-M, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly (lactide): from green plasticization to super-tough materials via (reactive) compounding. Front Chem 1:32CrossRef Kfoury G, Raquez J-M, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly (lactide): from green plasticization to super-tough materials via (reactive) compounding. Front Chem 1:32CrossRef
3.
Zurück zum Zitat Auras RA, Lim L-T, Selke SEM, Tsuji H (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley Auras RA, Lim L-T, Selke SEM, Tsuji H (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications. Wiley
4.
Zurück zum Zitat Li X, Zhong G (2010) Others, non-isothermal crystallization of poly (L-lactide)(PLLA) under quiescent and steady shear conditions, Chinese. J Polym Sci 28:357–366 Li X, Zhong G (2010) Others, non-isothermal crystallization of poly (L-lactide)(PLLA) under quiescent and steady shear conditions, Chinese. J Polym Sci 28:357–366
5.
Zurück zum Zitat Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef
6.
Zurück zum Zitat Xu H, Teng C, Yu M (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 47:3922–3928CrossRef Xu H, Teng C, Yu M (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 47:3922–3928CrossRef
7.
Zurück zum Zitat Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly (lactic acid) s. J Polym Environ 8:1–9CrossRef Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly (lactic acid) s. J Polym Environ 8:1–9CrossRef
8.
Zurück zum Zitat Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef
9.
Zurück zum Zitat Orozco VH, Brostow W, Chonkaew W, Lopez BL (2009) Preparation and characterization of Poly (Lactic Acid)-g-Maleic Anhydride+ Starch Blends. Macromol Symp:69–80CrossRef Orozco VH, Brostow W, Chonkaew W, Lopez BL (2009) Preparation and characterization of Poly (Lactic Acid)-g-Maleic Anhydride+ Starch Blends. Macromol Symp:69–80CrossRef
10.
Zurück zum Zitat Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56:1440–1447CrossRef Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56:1440–1447CrossRef
11.
Zurück zum Zitat Zhang J-F, Sun X (2004) Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules. 5:1446–1451CrossRef Zhang J-F, Sun X (2004) Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules. 5:1446–1451CrossRef
12.
Zurück zum Zitat Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polym Compos 31:114–127 Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polym Compos 31:114–127
13.
Zurück zum Zitat Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly (lactic acid) composites. J Appl Polym Sci 89:1203–1210CrossRef Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly (lactic acid) composites. J Appl Polym Sci 89:1203–1210CrossRef
14.
Zurück zum Zitat Acioli-Moura R, Sun XS (2008) Thermal degradation and physical aging of poly (lactic acid) and its blends with starch. Polym Eng Sci 48:829–836CrossRef Acioli-Moura R, Sun XS (2008) Thermal degradation and physical aging of poly (lactic acid) and its blends with starch. Polym Eng Sci 48:829–836CrossRef
15.
Zurück zum Zitat Ohkita T, Lee S-H (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017CrossRef Ohkita T, Lee S-H (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017CrossRef
16.
Zurück zum Zitat Liu X, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Effects of hydrophilic fillers on the thermal degradation of poly (lactic acid). Thermochim Acta 509:147–151CrossRef Liu X, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Effects of hydrophilic fillers on the thermal degradation of poly (lactic acid). Thermochim Acta 509:147–151CrossRef
17.
Zurück zum Zitat Gonzalez-Garzon M, Shahbikian S, Huneault MA (2018) Properties and phase structure of melt-processed PLA/PMMA blends. J Polym Res 25(2):58CrossRef Gonzalez-Garzon M, Shahbikian S, Huneault MA (2018) Properties and phase structure of melt-processed PLA/PMMA blends. J Polym Res 25(2):58CrossRef
18.
Zurück zum Zitat Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R, D’Souza NA, Ratto JA (2005) Influence of montmorillonite layered silicate on plasticized poly (L-lactide) blown films. Polymer 46:11716–11727CrossRef Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R, D’Souza NA, Ratto JA (2005) Influence of montmorillonite layered silicate on plasticized poly (L-lactide) blown films. Polymer 46:11716–11727CrossRef
19.
Zurück zum Zitat Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. Eur Polym J 43:1779–1785CrossRef Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. Eur Polym J 43:1779–1785CrossRef
20.
Zurück zum Zitat Rytlewski P, Malinowski R, Moraczewski K, Zenkiewicz M (2010) Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide. Radiat Phys Chem 79:1052–1057CrossRef Rytlewski P, Malinowski R, Moraczewski K, Zenkiewicz M (2010) Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide. Radiat Phys Chem 79:1052–1057CrossRef
21.
Zurück zum Zitat Yang S, Wu Z-H, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test 27:957–963CrossRef Yang S, Wu Z-H, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test 27:957–963CrossRef
22.
Zurück zum Zitat Mitomo H, Kaneda A, Quynh TM, Nagasawa N, Yoshii F (2005) Improvement of heat stability of poly (L-lactic acid) by radiation-induced crosslinking. Polymer. 46:4695–4703CrossRef Mitomo H, Kaneda A, Quynh TM, Nagasawa N, Yoshii F (2005) Improvement of heat stability of poly (L-lactic acid) by radiation-induced crosslinking. Polymer. 46:4695–4703CrossRef
23.
Zurück zum Zitat Takamura M, Nakamura T, Takahashi T, Koyama K (2008) Effect of type of peroxide on cross-linking of poly (l-lactide). Polym Degrad Stab 93:1909–1916CrossRef Takamura M, Nakamura T, Takahashi T, Koyama K (2008) Effect of type of peroxide on cross-linking of poly (l-lactide). Polym Degrad Stab 93:1909–1916CrossRef
24.
Zurück zum Zitat Han C, Bian J, Liu H, Han L, Wang S, Dong L, Chen S (2010) An investigation of the effect of silane water-crosslinking on the properties of poly (L-lactide). Polym Int 59:695–703 Han C, Bian J, Liu H, Han L, Wang S, Dong L, Chen S (2010) An investigation of the effect of silane water-crosslinking on the properties of poly (L-lactide). Polym Int 59:695–703
25.
Zurück zum Zitat Rahmat M, Ghasemi I, Karrabi M, Azizi H, Zandi M, Riahinezhad M (2015) Silane crosslinking of poly (lactic acid): the effect of simultaneous hydrolytic degradation. Express Polym Lett 9:1133–1141CrossRef Rahmat M, Ghasemi I, Karrabi M, Azizi H, Zandi M, Riahinezhad M (2015) Silane crosslinking of poly (lactic acid): the effect of simultaneous hydrolytic degradation. Express Polym Lett 9:1133–1141CrossRef
26.
Zurück zum Zitat Shayan M, Azizi H, Ghasemi I, Karrabi M (2015) Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid. Carbohydr Polym 124:237–244CrossRef Shayan M, Azizi H, Ghasemi I, Karrabi M (2015) Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid. Carbohydr Polym 124:237–244CrossRef
27.
Zurück zum Zitat Ma X, Yu J, Wang N (2006) Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. J Polym Sci Part B Polym Phys 44:94–101CrossRef Ma X, Yu J, Wang N (2006) Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. J Polym Sci Part B Polym Phys 44:94–101CrossRef
28.
Zurück zum Zitat Cheremisinoff NP (1989) Handbook of polymer science and technology. CRC Press Cheremisinoff NP (1989) Handbook of polymer science and technology. CRC Press
29.
Zurück zum Zitat Jang WY, Shin BY, Lee TJ, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13.3:457–464 Jang WY, Shin BY, Lee TJ, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13.3:457–464
30.
Zurück zum Zitat Zhang J-F, Sun X (2004) Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J Appl Polym Sci 94:1697–1704CrossRef Zhang J-F, Sun X (2004) Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J Appl Polym Sci 94:1697–1704CrossRef
31.
Zurück zum Zitat Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Melting behavior of poly (l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRef Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Melting behavior of poly (l-lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRef
32.
Zurück zum Zitat Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
33.
Zurück zum Zitat Shin BY, Jang SH, Kim BS (2011) Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polym Eng Sci 51:826–834CrossRef Shin BY, Jang SH, Kim BS (2011) Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polym Eng Sci 51:826–834CrossRef
34.
Zurück zum Zitat Zhang X, Golding J, Burgar I (2002) Proceeding of the 7th world conference on Biodegradable Polymers & Plastics, p 131 Zhang X, Golding J, Burgar I (2002) Proceeding of the 7th world conference on Biodegradable Polymers & Plastics, p 131
35.
Zurück zum Zitat Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A Appl Sci Manuf 41:954–963CrossRef Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Part A Appl Sci Manuf 41:954–963CrossRef
36.
Zurück zum Zitat Manos G, Yusof IY, Papayannakos N, Gangas NH (2001) Catalytic cracking of polyethylene over clay catalysts. Comparison with an ultrastable Y zeolite. Ind Eng Chem Res 40:2220–2225CrossRef Manos G, Yusof IY, Papayannakos N, Gangas NH (2001) Catalytic cracking of polyethylene over clay catalysts. Comparison with an ultrastable Y zeolite. Ind Eng Chem Res 40:2220–2225CrossRef
37.
Zurück zum Zitat Tartaglione G, Tabuani D, Camino G, Moisio M (2008) PP and PBT composites filled with sepiolite: morphology and thermal behaviour. Compos Sci Technol 68:451–460CrossRef Tartaglione G, Tabuani D, Camino G, Moisio M (2008) PP and PBT composites filled with sepiolite: morphology and thermal behaviour. Compos Sci Technol 68:451–460CrossRef
38.
Zurück zum Zitat Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439CrossRef Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439CrossRef
39.
Zurück zum Zitat Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14:127–135CrossRef Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14:127–135CrossRef
40.
Zurück zum Zitat Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35:1464–1468CrossRef Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Anal Chem 35:1464–1468CrossRef
41.
Zurück zum Zitat Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part A-2 Polym Phys 7:1761–1773CrossRef Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part A-2 Polym Phys 7:1761–1773CrossRef
42.
Zurück zum Zitat Wang N, Yu J, Chang PR, Ma X (2008) Influence of formamide and water on the properties of thermoplastic starch/poly (lactic acid) blends. Carbohydr Polym 71:109–118CrossRef Wang N, Yu J, Chang PR, Ma X (2008) Influence of formamide and water on the properties of thermoplastic starch/poly (lactic acid) blends. Carbohydr Polym 71:109–118CrossRef
Metadaten
Titel
Influence of modified starch and nanoclay particles on crystallization and thermal degradation properties of cross-linked poly(lactic acid)
verfasst von
Mohammad Shayan
Hamed Azizi
Ismaeil Ghasemi
Mohammad Karrabi
Publikationsdatum
01.10.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 10/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1879-1

Weitere Artikel der Ausgabe 10/2019

Journal of Polymer Research 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.