Skip to main content
Erschienen in: Journal of Materials Science 3/2018

04.10.2017 | Chemical routes to materials

Influence of oxygen-containing groups of activated carbon aerogels on copper/activated carbon aerogels catalyst and synthesis of dimethyl carbonate

verfasst von: Jing Wang, Ruina Shi, Panpan Hao, Wei Sun, Shusen Liu, Zhong Li, Jun Ren

Erschienen in: Journal of Materials Science | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Active catalysts that were prepared by dispersing copper (Cu) nanoparticles on potassium hydroxide (KOH)-activated carbon aerogels (ACAs) were investigated in the synthesis of dimethyl carbonate (DMC) by vapor-phase oxidative carbonylation of methanol. The effect of mesopores and surface oxygen-containing groups (OCGs) including C = O, COOH and OH of the ACAs on the dispersion of active species and catalytic properties was determined. An increase in molar ratio of resorcinol to anhydrous sodium carbonate (R/C) lead to the creation of mesopores within the original carbon aerogels (CAs), which benefits to molecules mass transport. The amount of surface OCGs increased positively with KOH/CAs mass ratio, which affected the valence distribution of Cu species, improved the Cu dispersion and enhanced the catalytic activity. For an optimum R/C of 500 and a KOH/CAs mass ratio of 4, the Cu/ACAs catalyst maintains a prominent DMC space time yield of 338.7 mg/(g h) and a methanol conversion of 2.5%. Density functional theory calculations indicate that of the different surface OCGs of the carbon support, enrichment in C = O group enhances the interaction between the metal and the ACAs support significantly and contributes to the formation of the smallest Cu nanoparticles and the highest catalytic activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Huang H, Yan F, Kek Y, Chew C, Xu G, Ji W, Oh P, Tang S (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175CrossRef Huang H, Yan F, Kek Y, Chew C, Xu G, Ji W, Oh P, Tang S (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175CrossRef
2.
Zurück zum Zitat Dhas N, Raj C, Gedanken A (1998) Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem Mater 10:3278CrossRef Dhas N, Raj C, Gedanken A (1998) Preparation of luminescent silicon nanoparticles: a novel sonochemical approach. Chem Mater 10:3278CrossRef
3.
Zurück zum Zitat Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186CrossRef Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Martra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186CrossRef
4.
Zurück zum Zitat Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305CrossRef Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305CrossRef
5.
Zurück zum Zitat Gawande M, Goswami A, Fo-X Felpin, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma R (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811CrossRef Gawande M, Goswami A, Fo-X Felpin, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma R (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811CrossRef
6.
Zurück zum Zitat Widayatno W, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A, Abudula A (2016) Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl Catal B Environ 186:166–172CrossRef Widayatno W, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A, Abudula A (2016) Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl Catal B Environ 186:166–172CrossRef
7.
Zurück zum Zitat Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. RSC, London Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. RSC, London
8.
Zurück zum Zitat Zhao H, Chen Y, Peng Q, Wang Q, Zhao G (2017) Catalytic activity of MOF (2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo–electro–Fenton process. Appl Catal B Environ 203:127–137CrossRef Zhao H, Chen Y, Peng Q, Wang Q, Zhao G (2017) Catalytic activity of MOF (2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo–electro–Fenton process. Appl Catal B Environ 203:127–137CrossRef
10.
Zurück zum Zitat Robertson C, Mokaya R (2013) Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Microporous Mesoporous Mater 179:151–156CrossRef Robertson C, Mokaya R (2013) Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Microporous Mesoporous Mater 179:151–156CrossRef
12.
Zurück zum Zitat Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1:27–40CrossRef Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1:27–40CrossRef
13.
Zurück zum Zitat Pereira M, Orfao J, Figueiredo J (1999) Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Appl Catal A Gen 184:153–160CrossRef Pereira M, Orfao J, Figueiredo J (1999) Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Appl Catal A Gen 184:153–160CrossRef
14.
Zurück zum Zitat Hsu H, Shown I, Wei H, Chang Y, Du H, Lin Y, Tseng C, Wang C, Chen L, Lin Y (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262–268CrossRef Hsu H, Shown I, Wei H, Chang Y, Du H, Lin Y, Tseng C, Wang C, Chen L, Lin Y (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262–268CrossRef
15.
Zurück zum Zitat Choi S, Seo M, Kim H, Kim W (2011) Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49:904–909CrossRef Choi S, Seo M, Kim H, Kim W (2011) Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49:904–909CrossRef
16.
Zurück zum Zitat Rao R, Ling Q, Dong H, Dong X, Li N, Zhang A (2016) Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chem Eng J 301:115–122CrossRef Rao R, Ling Q, Dong H, Dong X, Li N, Zhang A (2016) Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chem Eng J 301:115–122CrossRef
17.
Zurück zum Zitat Saada R, Kellici S, Heil T, Morgan D, Saha B (2015) Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst. Appl Catal B Environ 168:353–362CrossRef Saada R, Kellici S, Heil T, Morgan D, Saha B (2015) Greener synthesis of dimethyl carbonate using a novel ceria–zirconia oxide/graphene nanocomposite catalyst. Appl Catal B Environ 168:353–362CrossRef
18.
Zurück zum Zitat Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen 155:133–166CrossRef Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A Gen 155:133–166CrossRef
19.
Zurück zum Zitat Jessop P, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475–494CrossRef Jessop P, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475–494CrossRef
20.
Zurück zum Zitat Wang X, Fu T, Zheng H, Zhang G, Li Z (2016) The influence of the pore structure in ordered mesoporous carbon over the formation of Cu species and their catalytic activity towards the methanol oxidative carbonylation. J Mater Sci 51:5514–5528. doi:10.1007/s10853-016-9857-z CrossRef Wang X, Fu T, Zheng H, Zhang G, Li Z (2016) The influence of the pore structure in ordered mesoporous carbon over the formation of Cu species and their catalytic activity towards the methanol oxidative carbonylation. J Mater Sci 51:5514–5528. doi:10.​1007/​s10853-016-9857-z CrossRef
21.
Zurück zum Zitat Yang P, Cao Y, Dai W, Deng J, Fan K (2003) Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Appl Catal A-Gen 243:323–331CrossRef Yang P, Cao Y, Dai W, Deng J, Fan K (2003) Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Appl Catal A-Gen 243:323–331CrossRef
22.
Zurück zum Zitat Bian J, Xiao M, Wang S, Lu Y, Meng Y (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:7188–7196CrossRef Bian J, Xiao M, Wang S, Lu Y, Meng Y (2009) Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Appl Surf Sci 255:7188–7196CrossRef
23.
Zurück zum Zitat Zhang G, Li Z, Zheng H, Fu T, Ju Y, Wang Y (2015) Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol. Appl Catal B Environ 179:95–105CrossRef Zhang G, Li Z, Zheng H, Fu T, Ju Y, Wang Y (2015) Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol. Appl Catal B Environ 179:95–105CrossRef
24.
Zurück zum Zitat Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong C, Liu H, Yang B (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23CrossRef Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, Wong C, Liu H, Yang B (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23CrossRef
25.
Zurück zum Zitat Ren M, Ren J, Hao P, Yang J, Wang D, Pei Y, Lin J, Li Z (2016) Influence of microwave irradiation on the structural properties of carbon—supported hollow copper nanoparticles and their effect on the synthesis of dimethyl carbonate. ChemCatChem 8:861–871CrossRef Ren M, Ren J, Hao P, Yang J, Wang D, Pei Y, Lin J, Li Z (2016) Influence of microwave irradiation on the structural properties of carbon—supported hollow copper nanoparticles and their effect on the synthesis of dimethyl carbonate. ChemCatChem 8:861–871CrossRef
26.
Zurück zum Zitat Li J, Wang X, Huang Q, Gamboa S, Sebastian P (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sour 158:784–788CrossRef Li J, Wang X, Huang Q, Gamboa S, Sebastian P (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sour 158:784–788CrossRef
27.
Zurück zum Zitat Ren J, Wang W, Wang D, Zuo Z, Lin J, Li Z (2014) A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst. Appl Catal A Gen 472:47–52CrossRef Ren J, Wang W, Wang D, Zuo Z, Lin J, Li Z (2014) A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst. Appl Catal A Gen 472:47–52CrossRef
28.
Zurück zum Zitat Delley B (1990) An all—electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRef Delley B (1990) An all—electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRef
29.
Zurück zum Zitat Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Chem Phys 100:6107–6110CrossRef Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Chem Phys 100:6107–6110CrossRef
30.
Zurück zum Zitat Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef
31.
Zurück zum Zitat Hohenberg P, Kohn W (1965) Inhomogeneous electron gas. Phys Rev 140:A1133–A1138CrossRef Hohenberg P, Kohn W (1965) Inhomogeneous electron gas. Phys Rev 140:A1133–A1138CrossRef
32.
Zurück zum Zitat Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy—adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872CrossRef Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy—adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872CrossRef
33.
Zurück zum Zitat Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441CrossRef Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441CrossRef
34.
Zurück zum Zitat Brunauer S, Deming L, Deming W, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRef Brunauer S, Deming L, Deming W, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732CrossRef
35.
Zurück zum Zitat Khalili N, Campbell M, Sandi G, Golaś J (2000) Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation. Carbon 38:1905–1915CrossRef Khalili N, Campbell M, Sandi G, Golaś J (2000) Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation. Carbon 38:1905–1915CrossRef
36.
Zurück zum Zitat Xia J, Fu Y, He G, Sun X, Wang X (2017) Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl Catal B Environ 200:39–46CrossRef Xia J, Fu Y, He G, Sun X, Wang X (2017) Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl Catal B Environ 200:39–46CrossRef
37.
Zurück zum Zitat Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93–99CrossRef Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93–99CrossRef
38.
Zurück zum Zitat Lozano-Castello D, Calo J, Cazorla-Amoros D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45:2529–2536CrossRef Lozano-Castello D, Calo J, Cazorla-Amoros D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45:2529–2536CrossRef
39.
Zurück zum Zitat Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795CrossRef Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795CrossRef
40.
Zurück zum Zitat Zhao F, Huang Y (2011) Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: novel coupling agents for fiber/polymer matrix composites. J Mater Chem 21:3695–3703CrossRef Zhao F, Huang Y (2011) Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: novel coupling agents for fiber/polymer matrix composites. J Mater Chem 21:3695–3703CrossRef
41.
Zurück zum Zitat Biniak S, Pakula M, Szymanski G, Swiatkowski A (1999) Effect of activated carbon surface oxygen-and/or nitrogen-containing groups on adsorption of copper (II) ions from aqueous solution. Langmuir 15:6117–6122CrossRef Biniak S, Pakula M, Szymanski G, Swiatkowski A (1999) Effect of activated carbon surface oxygen-and/or nitrogen-containing groups on adsorption of copper (II) ions from aqueous solution. Langmuir 15:6117–6122CrossRef
42.
Zurück zum Zitat Li W, Lu A, Guo S (2001) Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 39:1989–1994CrossRef Li W, Lu A, Guo S (2001) Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 39:1989–1994CrossRef
43.
Zurück zum Zitat Park S, Jung W (2002) Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. Colloid Interf Sci 250:93–98CrossRef Park S, Jung W (2002) Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. Colloid Interf Sci 250:93–98CrossRef
44.
Zurück zum Zitat Boehm H (2008) Surface chemical characterization of carbons from adsorption studies. Adsorpt Carbons 301–327 Boehm H (2008) Surface chemical characterization of carbons from adsorption studies. Adsorpt Carbons 301–327
45.
Zurück zum Zitat Lin B, Wei K, Ni J, Lin J (2013) KOH activation of thermally modified carbon as a support of Ru catalysts for ammonia synthesis. ChemCatChem 5:1941–1947CrossRef Lin B, Wei K, Ni J, Lin J (2013) KOH activation of thermally modified carbon as a support of Ru catalysts for ammonia synthesis. ChemCatChem 5:1941–1947CrossRef
46.
Zurück zum Zitat Lopez-Ramon M, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215–1221CrossRef Lopez-Ramon M, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215–1221CrossRef
47.
Zurück zum Zitat Varga M, Izak T, Vretenar V, Kozak H, Holovsky J, Artemenko A, Hulman M, Skakalova V, Lee DS, Kromka A (2017) Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111:54–61CrossRef Varga M, Izak T, Vretenar V, Kozak H, Holovsky J, Artemenko A, Hulman M, Skakalova V, Lee DS, Kromka A (2017) Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111:54–61CrossRef
48.
Zurück zum Zitat Okpalugo T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161CrossRef Okpalugo T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161CrossRef
49.
Zurück zum Zitat Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef
50.
Zurück zum Zitat Xiong B, Zhou Y, Zhao Y, Wang J, Chen X, O’Hayre R, Shao Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52:181–192CrossRef Xiong B, Zhou Y, Zhao Y, Wang J, Chen X, O’Hayre R, Shao Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52:181–192CrossRef
51.
Zurück zum Zitat Song W, Li Y, Guo X, Li J, Huang X, Shen W (2010) Selective surface modification of activated carbon for enhancing the catalytic performance in hydrogen peroxide production by hydroxylamine oxidation. J Mol Catal A: Chem 328:53–59CrossRef Song W, Li Y, Guo X, Li J, Huang X, Shen W (2010) Selective surface modification of activated carbon for enhancing the catalytic performance in hydrogen peroxide production by hydroxylamine oxidation. J Mol Catal A: Chem 328:53–59CrossRef
52.
Zurück zum Zitat Horikawa T, Sakao N, Sekida T, Hayashi J, Do D, Katoh M (2012) Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 50:1833–1842CrossRef Horikawa T, Sakao N, Sekida T, Hayashi J, Do D, Katoh M (2012) Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 50:1833–1842CrossRef
53.
Zurück zum Zitat Li J, Ma L, Li X, Lu C, Liu H (2005) Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind Eng Chem Res 44:5478–5482CrossRef Li J, Ma L, Li X, Lu C, Liu H (2005) Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind Eng Chem Res 44:5478–5482CrossRef
54.
Zurück zum Zitat Rodrigues E, Pereira M, Chen X, Delgado J, Órfão J (2011) Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. J Catal 281:119–127CrossRef Rodrigues E, Pereira M, Chen X, Delgado J, Órfão J (2011) Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. J Catal 281:119–127CrossRef
55.
Zurück zum Zitat Dandekar A, Baker R, Vannice M (1999) Carbon-supported copper catalysts: I.Characterization. J Catal 183:131–154CrossRef Dandekar A, Baker R, Vannice M (1999) Carbon-supported copper catalysts: I.Characterization. J Catal 183:131–154CrossRef
56.
Zurück zum Zitat Ren J, Ren M, Wang D, Lin J, Li Z (2015) Mechanism of microwave-induced carbothermic reduction and catalytic performance of Cu/activated carbon catalysts in the oxidative carbonylation of methanol. J Therm Anal Calorim 120:1929–1939CrossRef Ren J, Ren M, Wang D, Lin J, Li Z (2015) Mechanism of microwave-induced carbothermic reduction and catalytic performance of Cu/activated carbon catalysts in the oxidative carbonylation of methanol. J Therm Anal Calorim 120:1929–1939CrossRef
57.
Zurück zum Zitat Espinós J, Morales J, Barranco A, Caballero A, Holgado J, González-Elipe A (2002) Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B 106:6921–6929CrossRef Espinós J, Morales J, Barranco A, Caballero A, Holgado J, González-Elipe A (2002) Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B 106:6921–6929CrossRef
58.
Zurück zum Zitat Teo J, Chang Y, Zeng H (2006) Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22:7369–7377CrossRef Teo J, Chang Y, Zeng H (2006) Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22:7369–7377CrossRef
59.
Zurück zum Zitat Wang W, Wang G, Wang X, Zhan Y, Liu Y, Zheng C (2002) Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv Mater 14:67–69CrossRef Wang W, Wang G, Wang X, Zhan Y, Liu Y, Zheng C (2002) Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv Mater 14:67–69CrossRef
60.
Zurück zum Zitat Raimondi F, Geissler K, Wambach J, Wokaun A (2002) Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD. Appl Surf Sci 189:59–71CrossRef Raimondi F, Geissler K, Wambach J, Wokaun A (2002) Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD. Appl Surf Sci 189:59–71CrossRef
61.
Zurück zum Zitat Wang R, Li Z, Zheng H, Xie K (2010) Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol. Chinses J Catal 31:851–856 Wang R, Li Z, Zheng H, Xie K (2010) Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol. Chinses J Catal 31:851–856
62.
Zurück zum Zitat Ren J, Wang D, Pei Y, Qin Z, Lin J, Li Z (2013) Effects of lithium content on the structural properties and catalytic activities of CuLi/AC catalysts in the oxidative carbonylation of methanol to dimethyl carbonate. Chem J Chinses U 34:2594–2600 Ren J, Wang D, Pei Y, Qin Z, Lin J, Li Z (2013) Effects of lithium content on the structural properties and catalytic activities of CuLi/AC catalysts in the oxidative carbonylation of methanol to dimethyl carbonate. Chem J Chinses U 34:2594–2600
63.
Zurück zum Zitat Zhang Y, Bell A (2008) The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. J Catal 255:153–161CrossRef Zhang Y, Bell A (2008) The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. J Catal 255:153–161CrossRef
64.
Zurück zum Zitat Ren J, Yang J, Wang W, Guo H, Zuo Z, Lin J, Li Z (2015) A DFT study of DMC formation on Rh - doped Cu/AC surfaces. Int J Quantum Chem 115:853–858CrossRef Ren J, Yang J, Wang W, Guo H, Zuo Z, Lin J, Li Z (2015) A DFT study of DMC formation on Rh - doped Cu/AC surfaces. Int J Quantum Chem 115:853–858CrossRef
65.
Zurück zum Zitat Ren J, Hao P, Sun W, Shi R, Liu S (2017) Ordered mesoporous silica-carbon-supported copper catalyst as an efficient and stable catalyst for catalytic oxidative carbonylation. Chem Eng J 328:673–682CrossRef Ren J, Hao P, Sun W, Shi R, Liu S (2017) Ordered mesoporous silica-carbon-supported copper catalyst as an efficient and stable catalyst for catalytic oxidative carbonylation. Chem Eng J 328:673–682CrossRef
66.
Zurück zum Zitat Sun W, Shi R, Wang X, Liu S, Han X, Zhao C, Li Z, Ren J (2017) Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst. Appl Surf Sci 425:291–300CrossRef Sun W, Shi R, Wang X, Liu S, Han X, Zhao C, Li Z, Ren J (2017) Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst. Appl Surf Sci 425:291–300CrossRef
67.
Zurück zum Zitat Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719CrossRef Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714–3719CrossRef
Metadaten
Titel
Influence of oxygen-containing groups of activated carbon aerogels on copper/activated carbon aerogels catalyst and synthesis of dimethyl carbonate
verfasst von
Jing Wang
Ruina Shi
Panpan Hao
Wei Sun
Shusen Liu
Zhong Li
Jun Ren
Publikationsdatum
04.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1639-8

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Science 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.