Skip to main content
Erschienen in: Fire Technology 1/2019

19.10.2018

Influence of Particle Size and Density on the Hot Surface Ignition of Solid Fuel Layers

verfasst von: Nieves Fernandez-Anez, Javier Garcia-Torrent

Erschienen in: Fire Technology | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dust layers are present in every industrial facility where solid materials are generated or processed. The emergence of new fuels with still unknown flammability properties generates an increase on the risks related with these facilities that needs to be further studied. Most of these biomasses are susceptible to exothermically react, acting as an ignition source and causing fires and explosions. One of the most common causes of explosions is the ignition of dust layers deposited on the equipment, which could be avoided by a better understanding of the materials. However, the ignitability of these layers depend on several parameters as the particle size and the density of the deposited materials. This paper reports experimental work on hot surface ignition temperatures of layers of different fuels, both biofuels, such as wood or sewage sludge, and fossil fuels, coal and coke. It shows that the common practices that are well-known for fossil fuels cannot be directly extrapolated to new fuels. Unlike fossil fuels, wood-based materials present the same ignition risk in dust and bulk size, so an increase on the particle size does not ensure a safer work space. Furthermore, compacting these materials can increase the ignition risk of these type of layers, contrary to the common practices for fossil fuels storages. These differences point out the need of a complete characterisation of each material to ensure a safe working facility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amyotte PR (2014) Some myths and realities about dust explosions. Process Saf Environ Prot 92(4): 292–299CrossRef Amyotte PR (2014) Some myths and realities about dust explosions. Process Saf Environ Prot 92(4): 292–299CrossRef
2.
Zurück zum Zitat Abbasi T, Abbasi S (2007) Dust explosions–cases, causes, consequences, and control. J Hazard Mater 140(1): 7–44CrossRef Abbasi T, Abbasi S (2007) Dust explosions–cases, causes, consequences, and control. J Hazard Mater 140(1): 7–44CrossRef
3.
Zurück zum Zitat IEC 60079-10-2:2015 (2015) Explosive atmospheres: part 10-2: classification of areas: explosive dust atmospheres IEC 60079-10-2:2015 (2015) Explosive atmospheres: part 10-2: classification of areas: explosive dust atmospheres
4.
Zurück zum Zitat EN 1127-1 (2011) Explosive atmospheres. Explosion prevention and protection. Basic concepts and methodology EN 1127-1 (2011) Explosive atmospheres. Explosion prevention and protection. Basic concepts and methodology
5.
Zurück zum Zitat Bowes P, Townshend S (1962) Ignition of combustible dusts on hot surfaces. Br J Appl Phys 13(3): 105CrossRef Bowes P, Townshend S (1962) Ignition of combustible dusts on hot surfaces. Br J Appl Phys 13(3): 105CrossRef
6.
Zurück zum Zitat Gummer J, Lunn G (2003) Ignitions of explosive dust clouds by smouldering and flaming agglomerates. J Loss Prev Process Ind 16(1): 27–32CrossRef Gummer J, Lunn G (2003) Ignitions of explosive dust clouds by smouldering and flaming agglomerates. J Loss Prev Process Ind 16(1): 27–32CrossRef
7.
Zurück zum Zitat Querol E, Torrent J, Bennett D, Gummer J, Fritze J-P (2006) Ignition tests for electrical and mechanical equipment subjected to hot surfaces. J Loss Prev Process Ind 19(6): 639–644CrossRef Querol E, Torrent J, Bennett D, Gummer J, Fritze J-P (2006) Ignition tests for electrical and mechanical equipment subjected to hot surfaces. J Loss Prev Process Ind 19(6): 639–644CrossRef
8.
Zurück zum Zitat EN 50281-2-1 (1999) Electrical apparatus for use in the presence of combustible dust-part 2-1: test methods—methods of determining minimum ignition temperatures EN 50281-2-1 (1999) Electrical apparatus for use in the presence of combustible dust-part 2-1: test methods—methods of determining minimum ignition temperatures
9.
Zurück zum Zitat Zhu H-q, Song Z-y, Tan B, Hao Y-z (2013) Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J Loss Prev Process Ind 26(1): 236–244CrossRef Zhu H-q, Song Z-y, Tan B, Hao Y-z (2013) Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J Loss Prev Process Ind 26(1): 236–244CrossRef
10.
Zurück zum Zitat Eckhoff RK (2009) Understanding dust explosions. The role of powder science and technology. J Loss Prevent Proc 22(1): 105–116CrossRef Eckhoff RK (2009) Understanding dust explosions. The role of powder science and technology. J Loss Prevent Proc 22(1): 105–116CrossRef
11.
Zurück zum Zitat Fierro V et al (1999) Prevention of spontaneous combustion in coal stockpiles: experimental results in coal storage yard. Fuel Process Technol 59(1): 23–34CrossRef Fierro V et al (1999) Prevention of spontaneous combustion in coal stockpiles: experimental results in coal storage yard. Fuel Process Technol 59(1): 23–34CrossRef
12.
Zurück zum Zitat Astbury G (2008) A review of the properties and hazards of some alternative fuels. Process Saf Environ Prot 86(6): 397–414CrossRef Astbury G (2008) A review of the properties and hazards of some alternative fuels. Process Saf Environ Prot 86(6): 397–414CrossRef
13.
Zurück zum Zitat Lam PY, Lam PS, Sokhansanj S, Bi XT, Lim CJ, Melin S (2014) Effects of pelletization conditions on breaking strength and dimensional stability of Douglas fir pellet. Fuel 117: 1085–1092CrossRef Lam PY, Lam PS, Sokhansanj S, Bi XT, Lim CJ, Melin S (2014) Effects of pelletization conditions on breaking strength and dimensional stability of Douglas fir pellet. Fuel 117: 1085–1092CrossRef
14.
Zurück zum Zitat Bates RB, Ghoniem AF (2012) Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Biores Technol 124: 460–469CrossRef Bates RB, Ghoniem AF (2012) Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Biores Technol 124: 460–469CrossRef
15.
Zurück zum Zitat Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer, Berlin Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer, Berlin
16.
Zurück zum Zitat Reddy PD, Amyotte PR, Pegg MJ (1998) Effect of inerts on layer ignition temperatures of coal dust. Combust Flame 114(1): 41–53CrossRef Reddy PD, Amyotte PR, Pegg MJ (1998) Effect of inerts on layer ignition temperatures of coal dust. Combust Flame 114(1): 41–53CrossRef
17.
Zurück zum Zitat Guo W (2013) Self-heating and spontaneous combustion of wood pellets during storage. University of British Columbia, Vancouver Guo W (2013) Self-heating and spontaneous combustion of wood pellets during storage. University of British Columbia, Vancouver
18.
Zurück zum Zitat Krause U, Schmidt M, Lohrer C (2006) A numerical model to simulate smouldering fires in bulk materials and dust deposits. J Loss Prev Process Ind 19(2): 218–226CrossRef Krause U, Schmidt M, Lohrer C (2006) A numerical model to simulate smouldering fires in bulk materials and dust deposits. J Loss Prev Process Ind 19(2): 218–226CrossRef
19.
Zurück zum Zitat IEA Bioenenergy (2013) Health and safety aspects of solid biomass storage, transportation and feeding IEA Bioenenergy (2013) Health and safety aspects of solid biomass storage, transportation and feeding
20.
Zurück zum Zitat Wilén C et al (1999) Safe handling of renewable fuels and fuel mixtures. Technical Research Centre of Finland, Espoo Wilén C et al (1999) Safe handling of renewable fuels and fuel mixtures. Technical Research Centre of Finland, Espoo
21.
Zurück zum Zitat Collazo J, Pazó JA, Granada E, Saavedra Á, Eguía P (2012) Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis. Energy 45(1): 746–752CrossRef Collazo J, Pazó JA, Granada E, Saavedra Á, Eguía P (2012) Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis. Energy 45(1): 746–752CrossRef
22.
Zurück zum Zitat Warnsloh JM (2015) TriAngle: A Microsoft Excel™ spreadsheet template for the generation of triangular plots. Neues Jahrb für Mineral Abh J Mineral Geochem 192(1): 101–105 Warnsloh JM (2015) TriAngle: A Microsoft Excel™ spreadsheet template for the generation of triangular plots. Neues Jahrb für Mineral Abh J Mineral Geochem 192(1): 101–105
23.
Zurück zum Zitat Huescar Medina C, Phylaktou HN, Sattar H, Andrews GE, Gibbs B (2013) Torrefaction effects on the reactivity and explosibility of woody biomass. In: Proceedings of the 7th international seminar on fire and explosion hazards. Providence, RI Huescar Medina C, Phylaktou HN, Sattar H, Andrews GE, Gibbs B (2013) Torrefaction effects on the reactivity and explosibility of woody biomass. In: Proceedings of the 7th international seminar on fire and explosion hazards. Providence, RI
24.
Zurück zum Zitat Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011) Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11): 3285–3290CrossRef Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J, Henriksen UB (2011) Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11): 3285–3290CrossRef
25.
Zurück zum Zitat Jiang L et al (2014) Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Biores Technol 166: 435–443CrossRef Jiang L et al (2014) Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Biores Technol 166: 435–443CrossRef
Metadaten
Titel
Influence of Particle Size and Density on the Hot Surface Ignition of Solid Fuel Layers
verfasst von
Nieves Fernandez-Anez
Javier Garcia-Torrent
Publikationsdatum
19.10.2018
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2019
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-018-0782-3

Weitere Artikel der Ausgabe 1/2019

Fire Technology 1/2019 Zur Ausgabe