Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2020

13.08.2020

Influence of Soybean Hull Fiber Concentration on the Water Absorption and Mechanical Properties of 3D-Printed Thermoplastic Copolyester/Soybean Hull Fiber Composites

verfasst von: Vamsi Krishna Balla, Kunal H. Kate, Jogi Ganesh Dattatreya Tadimeti, Jagannadh Satyavolu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, fused filament fabrication 3D-printed parts of soybean hull fiber thermoplastic copolyester (TPC) composites with soybean hull fiber concentrations of 0-35 wt.% were tested to understand the influence of mechanical properties and moisture sensitivity on the soybean hull fiber concentration. The composites were analyzed for their microstructures and mechanical properties in as-printed condition and after immersion in deionized water for 168 h. The printed parts with ≥ 25 wt.% soybean hull fiber were found to have more porosity (9-12%) leading to high rate of water absorption with a maximum weight gain of ~ 8% and up to 4% volumetric swelling. However, in the as-printed condition, these composites exhibited significantly higher elastic modulus of 80 ± 3 MPa than pure TPC (36 ± 3 MPa) and their strength improved by 40%. The toughness of the composites decreased below that of pure TPC when the fiber concentration was 35 wt.% due to significant drop in the elongation. The composites with ≤ 15 wt.% soybean hull fiber showed marginal drop in the mechanical properties due to water absorption. Additionally, the microstructural analysis showed good fiber–matrix interfacial characteristics in as-printed condition, which were damaged due to moisture absorption in addition to defragmentation of fiber bundles. Interestingly, the toughness of TPC–soybean hull fiber composites was immune to water absorption and the deleterious effect of moisture on the mechanical appears to be partly reversible after drying the composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat A.K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, Biodegradable Polymers and Biocomposites: An Overview, Macromol. Mater. Eng., 2000, 276-277, p 1–24CrossRef A.K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, Biodegradable Polymers and Biocomposites: An Overview, Macromol. Mater. Eng., 2000, 276-277, p 1–24CrossRef
4.
Zurück zum Zitat K. Tak Lau, P. Yan Hung, M.H. Zhu, and D. Hui, Properties of Natural Fibre Composites for Structural Engineering Applications, Compos. Part B Eng., 2018, 136, p 222–233CrossRef K. Tak Lau, P. Yan Hung, M.H. Zhu, and D. Hui, Properties of Natural Fibre Composites for Structural Engineering Applications, Compos. Part B Eng., 2018, 136, p 222–233CrossRef
5.
Zurück zum Zitat G. Koronis, A. Silva, and M. Fontul, Green Composites: A Review of Adequate Materials for Automotive Applications, Compos. Part B Eng., 2013, 44(1), p 120–127CrossRef G. Koronis, A. Silva, and M. Fontul, Green Composites: A Review of Adequate Materials for Automotive Applications, Compos. Part B Eng., 2013, 44(1), p 120–127CrossRef
6.
Zurück zum Zitat J. Summerscales, N.P.J. Dissanayake, A.S. Virk, and W. Hall, A Review of Bast Fibers and Their Composites. Part 1-Fibers as Reinforcements, Compos. Part A, 2010, 41(10), p 1329–1335CrossRef J. Summerscales, N.P.J. Dissanayake, A.S. Virk, and W. Hall, A Review of Bast Fibers and Their Composites. Part 1-Fibers as Reinforcements, Compos. Part A, 2010, 41(10), p 1329–1335CrossRef
7.
Zurück zum Zitat K.L. Pickering, M.G.A. Efendy, and T.M. Le, A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance, Compos. Part A Appl. Sci. Manuf., 2016, 83, p 98–112CrossRef K.L. Pickering, M.G.A. Efendy, and T.M. Le, A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance, Compos. Part A Appl. Sci. Manuf., 2016, 83, p 98–112CrossRef
8.
Zurück zum Zitat F.Z. Arrakhiz, M. El Achaby, M. Malha, M.O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, and A. Qaiss, Mechanical and Thermal Properties of Natural Fibers Reinforced Polymer Composites: Doum/Low Density Polyethylene, Mater. Des., 2013, 43, p 200–205CrossRef F.Z. Arrakhiz, M. El Achaby, M. Malha, M.O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, and A. Qaiss, Mechanical and Thermal Properties of Natural Fibers Reinforced Polymer Composites: Doum/Low Density Polyethylene, Mater. Des., 2013, 43, p 200–205CrossRef
9.
Zurück zum Zitat N. Venkateshwaran, A. Elaya Perumal, and D. Arunsundaranayagam, Fiber Surface Treatment and Its Effect on Mechanical and Visco-Elastic Behaviour of Banana/Epoxy Composite, Mater. Des., 2013, 47, p 151–159CrossRef N. Venkateshwaran, A. Elaya Perumal, and D. Arunsundaranayagam, Fiber Surface Treatment and Its Effect on Mechanical and Visco-Elastic Behaviour of Banana/Epoxy Composite, Mater. Des., 2013, 47, p 151–159CrossRef
10.
Zurück zum Zitat S.S. Mir, N. Nafsin, M. Hasan, N. Hasan, and A. Hassan, Improvement of Physico-Mechanical Properties of Coir-Polypropylene Biocomposites by Fiber Chemical Treatment, Mater. Des., 2013, 52, p 251–257CrossRef S.S. Mir, N. Nafsin, M. Hasan, N. Hasan, and A. Hassan, Improvement of Physico-Mechanical Properties of Coir-Polypropylene Biocomposites by Fiber Chemical Treatment, Mater. Des., 2013, 52, p 251–257CrossRef
11.
Zurück zum Zitat I. Van de Weyenberg, J. Ivens, A. De Coster, B. Kino, E. Baetens, and I. Verpoest, Influence of Processing and Chemical Treatment of Flax Fibres on Their Composites, Compos. Sci. Technol., 2003, 63(9), p 1241–1246CrossRef I. Van de Weyenberg, J. Ivens, A. De Coster, B. Kino, E. Baetens, and I. Verpoest, Influence of Processing and Chemical Treatment of Flax Fibres on Their Composites, Compos. Sci. Technol., 2003, 63(9), p 1241–1246CrossRef
12.
Zurück zum Zitat H.U. Zaman and M.D.H. Beg, Preparation, Structure, and Properties of the Coir Fiber/Polypropylene Composites, J. Compos. Mater., 2014, 48(26), p 3293–3301CrossRef H.U. Zaman and M.D.H. Beg, Preparation, Structure, and Properties of the Coir Fiber/Polypropylene Composites, J. Compos. Mater., 2014, 48(26), p 3293–3301CrossRef
13.
Zurück zum Zitat S. Alix, L. Colasse, C. Morvan, L. Lebrun, and S. Marais, Pressure Impact of Autoclave Treatment on Water Sorption and Pectin Composition of Flax Cellulosic-Fibres, Carbohydr. Polym., 2014, 102, p 21–29CrossRef S. Alix, L. Colasse, C. Morvan, L. Lebrun, and S. Marais, Pressure Impact of Autoclave Treatment on Water Sorption and Pectin Composition of Flax Cellulosic-Fibres, Carbohydr. Polym., 2014, 102, p 21–29CrossRef
14.
Zurück zum Zitat H.U. Zaman, M.A. Khan, and R.A. Khan, Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation, Polym. Plast. Technol. Eng., 2009, 48(11), p 1130–1138CrossRef H.U. Zaman, M.A. Khan, and R.A. Khan, Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation, Polym. Plast. Technol. Eng., 2009, 48(11), p 1130–1138CrossRef
15.
Zurück zum Zitat M. Sarikanat, Y. Seki, and K. Sever, The Effect of Argon and Air Plasma Treatment of Flax Fiber on Mechanical Properties of Reinforced Polyester Composite, J. Ind. Text., 2016, 45(6), p 1252–1267CrossRef M. Sarikanat, Y. Seki, and K. Sever, The Effect of Argon and Air Plasma Treatment of Flax Fiber on Mechanical Properties of Reinforced Polyester Composite, J. Ind. Text., 2016, 45(6), p 1252–1267CrossRef
16.
Zurück zum Zitat T. Gurunathan, S. Mohanty, and S.K. Nayak, A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives, Compos. Part A Appl. Sci. Manuf., 2015, 77, p 1–25CrossRef T. Gurunathan, S. Mohanty, and S.K. Nayak, A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives, Compos. Part A Appl. Sci. Manuf., 2015, 77, p 1–25CrossRef
17.
Zurück zum Zitat A. Le Duigou, M. Castro, R. Bevan, and N. Martin, 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality, Mater. Des., 2016, 96, p 106–114CrossRef A. Le Duigou, M. Castro, R. Bevan, and N. Martin, 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality, Mater. Des., 2016, 96, p 106–114CrossRef
19.
Zurück zum Zitat D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, and A. Clare, Materials for Additive Manufacturing, CIRP Ann. Manuf. Technol., 2017, 66, p 659–681CrossRef D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, and A. Clare, Materials for Additive Manufacturing, CIRP Ann. Manuf. Technol., 2017, 66, p 659–681CrossRef
20.
Zurück zum Zitat P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Compos. Struct., 2017, 182, p 36–53CrossRef P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Compos. Struct., 2017, 182, p 36–53CrossRef
25.
Zurück zum Zitat G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M.E. Errico, Natural Fiber Eco-composites, Polym. Compos., 2007, 28(1), p 98–107CrossRef G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M.E. Errico, Natural Fiber Eco-composites, Polym. Compos., 2007, 28(1), p 98–107CrossRef
26.
Zurück zum Zitat S. Shinoj, S. Panigrahi, and R. Visvanathan, Water Absorption Pattern and Dimensional Stability of Oil Palm Fiber-Linear Low Density Polyethylene Composites, J. Appl. Polym. Sci., 2010, 117, p 1064–1075CrossRef S. Shinoj, S. Panigrahi, and R. Visvanathan, Water Absorption Pattern and Dimensional Stability of Oil Palm Fiber-Linear Low Density Polyethylene Composites, J. Appl. Polym. Sci., 2010, 117, p 1064–1075CrossRef
27.
Zurück zum Zitat N.A. Ibrahim, K.A. Hadithon, and K. Abdan, Effect of Fiber Treatment on Mechanical Properties of Kenaf Fiber-Ecoflex Composites, J. Reinf. Plast. Compos., 2010, 29(14), p 2192–2198CrossRef N.A. Ibrahim, K.A. Hadithon, and K. Abdan, Effect of Fiber Treatment on Mechanical Properties of Kenaf Fiber-Ecoflex Composites, J. Reinf. Plast. Compos., 2010, 29(14), p 2192–2198CrossRef
28.
Zurück zum Zitat M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, and T. Aravinthan, Mechanical Properties of Chemically-Treated Hemp Fibre Reinforced Sandwich Composites, Compos. Part B Eng., 2012, 43(2), p 159–169CrossRef M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, and T. Aravinthan, Mechanical Properties of Chemically-Treated Hemp Fibre Reinforced Sandwich Composites, Compos. Part B Eng., 2012, 43(2), p 159–169CrossRef
29.
Zurück zum Zitat M.S. Islam, K.L. Pickering, and N.J. Foreman, Influence of Alkali Treatment on the Interfacial and Physico-Mechanical Properties of Industrial Hemp Fibre Reinforced Polylactic Acid Composites, Compos. Part A Appl. Sci. Manuf., 2010, 41(5), p 596–603CrossRef M.S. Islam, K.L. Pickering, and N.J. Foreman, Influence of Alkali Treatment on the Interfacial and Physico-Mechanical Properties of Industrial Hemp Fibre Reinforced Polylactic Acid Composites, Compos. Part A Appl. Sci. Manuf., 2010, 41(5), p 596–603CrossRef
31.
Zurück zum Zitat T.H. Mokhothu and M.J. John, Bio-Based Coatings for Reducing Water Sorption in Natural Fibre Reinforced Composites, Sci. Rep., 2017, 7(1), p 13335CrossRef T.H. Mokhothu and M.J. John, Bio-Based Coatings for Reducing Water Sorption in Natural Fibre Reinforced Composites, Sci. Rep., 2017, 7(1), p 13335CrossRef
32.
Zurück zum Zitat R.A. Kakroodi, Y. Kazemi, and D. Rodrigue, Mechanical, Rheological, Morphological and Water Absorption Properties of Maleated Polyethylene/Hemp Composites: Effect of Ground Tire Rubber Addition, Compos. Part B Eng., 2013, 51, p 337–344CrossRef R.A. Kakroodi, Y. Kazemi, and D. Rodrigue, Mechanical, Rheological, Morphological and Water Absorption Properties of Maleated Polyethylene/Hemp Composites: Effect of Ground Tire Rubber Addition, Compos. Part B Eng., 2013, 51, p 337–344CrossRef
33.
Zurück zum Zitat W. Wang, M. Sain, and P.A. Cooper, Study of Moisture Absorption in Natural Fiber Plastic Composites, Compos. Sci. Technol., 2006, 66, p 379–386CrossRef W. Wang, M. Sain, and P.A. Cooper, Study of Moisture Absorption in Natural Fiber Plastic Composites, Compos. Sci. Technol., 2006, 66, p 379–386CrossRef
34.
Zurück zum Zitat S.P. Priyanka, Effect of Water Absorption on Interface and Tensile Properties of Banana Fibre Reinforced Functionalized Polypropylene (BF/CFPP) Composites Developed by Palsule Process, Appl. Polym. Compos., 2013, 1(2), p 103–112 S.P. Priyanka, Effect of Water Absorption on Interface and Tensile Properties of Banana Fibre Reinforced Functionalized Polypropylene (BF/CFPP) Composites Developed by Palsule Process, Appl. Polym. Compos., 2013, 1(2), p 103–112
35.
Zurück zum Zitat A. Espert, F. Vilaplana, and S. Karlsson, Comparison of Water Absorption in Natural Cellulosic Fibres from Wood and One-Year Crops in Polypropylene Composites and Its Influence on Their Mechanical Properties, Compos. Part A Appl. Sci. Manuf., 2004, 35(11), p 1267–1276CrossRef A. Espert, F. Vilaplana, and S. Karlsson, Comparison of Water Absorption in Natural Cellulosic Fibres from Wood and One-Year Crops in Polypropylene Composites and Its Influence on Their Mechanical Properties, Compos. Part A Appl. Sci. Manuf., 2004, 35(11), p 1267–1276CrossRef
36.
Zurück zum Zitat A.C. Karmaker, Effect of Water Absorption on Dimensional Stability and Impact Energy of Jute Fibre Reinforced Polypropylene, J. Mater. Sci. Lett., 1997, 16(6), p 462–464CrossRef A.C. Karmaker, Effect of Water Absorption on Dimensional Stability and Impact Energy of Jute Fibre Reinforced Polypropylene, J. Mater. Sci. Lett., 1997, 16(6), p 462–464CrossRef
Metadaten
Titel
Influence of Soybean Hull Fiber Concentration on the Water Absorption and Mechanical Properties of 3D-Printed Thermoplastic Copolyester/Soybean Hull Fiber Composites
verfasst von
Vamsi Krishna Balla
Kunal H. Kate
Jogi Ganesh Dattatreya Tadimeti
Jagannadh Satyavolu
Publikationsdatum
13.08.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05021-3

Weitere Artikel der Ausgabe 9/2020

Journal of Materials Engineering and Performance 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.