Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2013

01.07.2013

Influence of Steel Grade on Surface Cooling Rates and Heat Flux during Quenching

verfasst von: T. S. Prasanna Kumar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Immersion quenching is one of the most widely used processes for achieving martensitic and bainitic steels. The efficiency and quality of quenching are generally tested using standard quench probes for obtaining the cooling curves. A host of parameters like quenchant type, steel grade, bath agitation, section thickness, etc., affect the cooling curves. Cooling curve analyses covered under ASTM standards cannot be used to assess the performance of a quenchant for different grades of steel, as they use a common material for the probe. This article reports the development of equipment, which, in conjunction with mathematical models, can be used for obtaining cooling curves for a specific steel/quenchant combination. The mathematical models couple nonlinear transient inverse heat transfer with phase transformation, resulting in cooling curves specific to the steel grade-quenchant combination. The austenite decomposition models were based on an approach consistent with both the TTT diagram of the steel and Fe-C equilibrium phase diagrams. The TTT diagrams for the specific chemistry of the specimens and the thermophysical properties of the individual phases as functions of temperature were obtained using JMatPro software. Experiments were conducted in the laboratory for computing surface temperature and heat flux at the mid-section of a 25-mm diameter by 100-mm-long cylindrical specimen of two types of steels in two different quenchants. A low alloy steel (EN19) and a plain carbon steel (C45) were used for bringing out the influence of austenite transformation on surface cooling rates and heat flux. Two types of industrial quenchants (i) a mineral oil, and (ii) an aqueous solution of polymer were used. The results showed that the cooling curves, cooling rate curves, and the surface heat flux depended on the steel grade with the quenchant remaining the same.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.E. Totten, C.E. Bates, and N.A. Clinton, Ed., Handbook of Quenchants and Quenching Technology, American Society of Metals, Materials Park, OH, 1993 G.E. Totten, C.E. Bates, and N.A. Clinton, Ed., Handbook of Quenchants and Quenching Technology, American Society of Metals, Materials Park, OH, 1993
3.
Zurück zum Zitat W.P. de Oliviera, M.A. Savi, P.M.C.L. Pacheco, and L.F.G. de Souza, Thermomechanical Analysis of Steel Cylinders Quenching Using a Constitutive Model with Diffusional and Non-diffusional Phase Transformations, Mech. Mater., 2010, 42, p 31–43CrossRef W.P. de Oliviera, M.A. Savi, P.M.C.L. Pacheco, and L.F.G. de Souza, Thermomechanical Analysis of Steel Cylinders Quenching Using a Constitutive Model with Diffusional and Non-diffusional Phase Transformations, Mech. Mater., 2010, 42, p 31–43CrossRef
4.
Zurück zum Zitat C. Simsir and C. Hakan Gur, Simulation of Quenching, Handbook of Thermal Processing of Steels, C. Hakan Gur and J. Pan, Ed., CRC Press, Boca Raton, 2008, p 341–425 C. Simsir and C. Hakan Gur, Simulation of Quenching, Handbook of Thermal Processing of Steels, C. Hakan Gur and J. Pan, Ed., CRC Press, Boca Raton, 2008, p 341–425
5.
Zurück zum Zitat H. Li, G. Zhao, S. Niu, and C. Huang, FEM Simulation of Quenching Process and Experimental Verification of Simulation Results, Mater. Sci. Eng. A, 2007, 452–453, p 705–714 H. Li, G. Zhao, S. Niu, and C. Huang, FEM Simulation of Quenching Process and Experimental Verification of Simulation Results, Mater. Sci. Eng. A, 2007, 452–453, p 705–714
6.
Zurück zum Zitat H. Li, G. Zhao, and L. He, Finite Element Method Based Simulation of Stress-Strain Field in the Quenching Process, Mater. Sci. Eng. A, 2008, 15, p 276–290 H. Li, G. Zhao, and L. He, Finite Element Method Based Simulation of Stress-Strain Field in the Quenching Process, Mater. Sci. Eng. A, 2008, 15, p 276–290
7.
Zurück zum Zitat S.H. Kang and Y.T. Im, Thermo-Elasto-Plastic Finite Element Analysis of Quenching Process of Carbon Steel, J. Mater. Process. Technol., 2007, 192–193, p 381–390CrossRef S.H. Kang and Y.T. Im, Thermo-Elasto-Plastic Finite Element Analysis of Quenching Process of Carbon Steel, J. Mater. Process. Technol., 2007, 192–193, p 381–390CrossRef
8.
Zurück zum Zitat M. Eshraghi Kakhki, A. Kermanpur, and M.A. Golozar, Numerical Simulation of Continuous Cooling of a Low Alloy Steel to Predict Microstructure and Hardness, Model. Simul. Mater. Sci. Eng., 2009, 17, p 1–21 M. Eshraghi Kakhki, A. Kermanpur, and M.A. Golozar, Numerical Simulation of Continuous Cooling of a Low Alloy Steel to Predict Microstructure and Hardness, Model. Simul. Mater. Sci. Eng., 2009, 17, p 1–21
9.
Zurück zum Zitat P. Carlone, G.S. Palazzo, and R. Pasquino, Finite Element Analysis of the Steel Quenching Process: Temperature Field and Solid-Phase Change, Comput. Math. Appl., 2010, 59, p 585–594CrossRef P. Carlone, G.S. Palazzo, and R. Pasquino, Finite Element Analysis of the Steel Quenching Process: Temperature Field and Solid-Phase Change, Comput. Math. Appl., 2010, 59, p 585–594CrossRef
10.
Zurück zum Zitat A. Zehtab Yazdi, S.A. Sajjadi, S.M. Zebarjad, and Moosavi. Nezhad, Prediction of Hardness at Different Points of Jominy Specimen Using Quench Factor Analysis Method, J. Mater. Process. Technol., 2008, 199(1–3), p 124–129CrossRef A. Zehtab Yazdi, S.A. Sajjadi, S.M. Zebarjad, and Moosavi. Nezhad, Prediction of Hardness at Different Points of Jominy Specimen Using Quench Factor Analysis Method, J. Mater. Process. Technol., 2008, 199(1–3), p 124–129CrossRef
11.
Zurück zum Zitat T.S. Prasanna Kumar, Coupled Analysis of Surface Heat Flux, Microstructure Evolution, and Hardness During Immersion Quenching of a Medium Carbon Steel in Plant Conditions, Mater. Perform. Charact., 2012, 9(5), Paper ID MPC104477 T.S. Prasanna Kumar, Coupled Analysis of Surface Heat Flux, Microstructure Evolution, and Hardness During Immersion Quenching of a Medium Carbon Steel in Plant Conditions, Mater. Perform. Charact., 2012, 9(5), Paper ID MPC104477
12.
Zurück zum Zitat J.V. Beck et al., Inverse Heat Conduction, Ill Posed Problems, Wiley/Interscience, New York, 1985 J.V. Beck et al., Inverse Heat Conduction, Ill Posed Problems, Wiley/Interscience, New York, 1985
13.
Zurück zum Zitat O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994CrossRef O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994CrossRef
14.
Zurück zum Zitat T.S. Prasanna Kumar, A Serial Solution for the 2-D Inverse Heat Conduction Problem for Estimating Multiple Heat Flux Components, Numer. Heat Transf. B, 2004, 45(6), p 541–563CrossRef T.S. Prasanna Kumar, A Serial Solution for the 2-D Inverse Heat Conduction Problem for Estimating Multiple Heat Flux Components, Numer. Heat Transf. B, 2004, 45(6), p 541–563CrossRef
15.
Zurück zum Zitat T.S. Prasanna Kumar and H.C. Kamath, Multidimensional Analysis of Interface Heat Flux in Metallic Molds During Solidification of Aluminum Alloy Plate Castings, 108th Casting Congress of American Foundrymen’s Society, June 2004 (Rosemont, IL, USA) T.S. Prasanna Kumar and H.C. Kamath, Multidimensional Analysis of Interface Heat Flux in Metallic Molds During Solidification of Aluminum Alloy Plate Castings, 108th Casting Congress of American Foundrymen’s Society, June 2004 (Rosemont, IL, USA)
16.
Zurück zum Zitat S. Arun Kumar, K.V. Sreenivasa Rao, and T.S. Prasanna Kumar, Spatial Variation of Heat Flux at the Metal-Mold Interface due to Mold Filling Effects in Gravity Die-Casting, Int. J. Heat Mass Transf., 2007, 51, p 2676–2685CrossRef S. Arun Kumar, K.V. Sreenivasa Rao, and T.S. Prasanna Kumar, Spatial Variation of Heat Flux at the Metal-Mold Interface due to Mold Filling Effects in Gravity Die-Casting, Int. J. Heat Mass Transf., 2007, 51, p 2676–2685CrossRef
17.
Zurück zum Zitat T.S. Prasanna Kumar, P.V.D. Ramesh, and D.R.G. Achar, Estimation of Heat Flux in GTAW Process Using Inverse Heat Conduction Method, IIW IC 08, Jan 2008 (Chennai) T.S. Prasanna Kumar, P.V.D. Ramesh, and D.R.G. Achar, Estimation of Heat Flux in GTAW Process Using Inverse Heat Conduction Method, IIW IC 08, Jan 2008 (Chennai)
18.
Zurück zum Zitat K. Babu and T.S. Prasanna Kumar, Effect of Bath Temperature on Surface Heat Flux During Quenching in CNT Nanofluids, Heat Treat 2011, Oct 30–Nov 2, 2011 (Cincinnati, OH) K. Babu and T.S. Prasanna Kumar, Effect of Bath Temperature on Surface Heat Flux During Quenching in CNT Nanofluids, Heat Treat 2011, Oct 30–Nov 2, 2011 (Cincinnati, OH)
19.
Zurück zum Zitat K.V. Sreenivasa Rao, “Spatial and Temporal Variation of Metal-Mold Interface Heat Flux During Gravity Die Casting,” Ph.D. Thesis, Indian Institute of Technology Madras, India, 2008 K.V. Sreenivasa Rao, “Spatial and Temporal Variation of Metal-Mold Interface Heat Flux During Gravity Die Casting,” Ph.D. Thesis, Indian Institute of Technology Madras, India, 2008
21.
Zurück zum Zitat W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans. AIME, 1939, 135, p 416–458 W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans. AIME, 1939, 135, p 416–458
22.
Zurück zum Zitat M. Avrami, Kinetics of Phase Change. I, General Theory, J. Chem. Phys., 1939, 7, p 1103–1112CrossRef M. Avrami, Kinetics of Phase Change. I, General Theory, J. Chem. Phys., 1939, 7, p 1103–1112CrossRef
23.
Zurück zum Zitat M. Avrami, Kinetics of Phase Change. II: Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8, p 212–224CrossRef M. Avrami, Kinetics of Phase Change. II: Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8, p 212–224CrossRef
24.
Zurück zum Zitat D.P. Koistinen and R.E. Marburger, A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Carbon Steels, Acta Metall., 1959, 7, p 59–60CrossRef D.P. Koistinen and R.E. Marburger, A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Carbon Steels, Acta Metall., 1959, 7, p 59–60CrossRef
Metadaten
Titel
Influence of Steel Grade on Surface Cooling Rates and Heat Flux during Quenching
verfasst von
T. S. Prasanna Kumar
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0552-9

Weitere Artikel der Ausgabe 7/2013

Journal of Materials Engineering and Performance 7/2013 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.