Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Influence of Temperature on Supercapacitor Components

verfasst von : Guoping Xiong, Arpan Kundu, Timothy S. Fisher

Erschienen in: Thermal Effects in Supercapacitors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermophysical properties of supercapacitor components determine the thermal behavior of supercapacitors at different application temperatures. A fundamental understanding of the influence of temperature on these properties is necessary to design supercapacitors with high performance for practical applications. Major supercapacitor elements include electrolytes, electrodes (active electrode materials, current collectors, and binders) and separators. As discussed in Chap. 2, supercapacitor electrolytes can be broadly classified into two types: liquid electrolytes and solid-state/polymer gel electrolytes (Xiong et al. in Electroanalysis 26:30–51, 2014 [24]). Conventional liquid electrolytes include: (i) aqueous electrolytes, (ii) organic electrolytes and (iii) ionic liquid electrolytes. The commonly used solid-state polymer gel electrolytes are water-containing (proton-conducting/alkaline), organic solvent-containing, and ionic liquid-containing polymer electrolytes. Active electrode materials for supercapacitors are broadly classified into three categories (Xiong et al. in Electroanalysis 26:30–51, 2014 [24]): (1) carbon materials, (2) conducting polymers, and (3) transition metal oxides. The importance of these electrolytes, electrode materials and separators has been addressed in prior reviews (Xiong et al. in Electroanalysis 26:30–51, 2014 [24], Simon and Gogotsi in Nat Mater 7:845–854, 2008 [39], Ye et al. in J Mater Chem A 1:2719–2743, 2013 [84], Zhang in J Power Sources 164:351–364, 2007 [193], Huang in J Solid State Electr 15:649–662, 2011 [194]). This chapter discusses the effects of temperature on the thermophysical properties of these components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988 Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988
2.
Zurück zum Zitat Chen H, Choi J-H, Salas-de la Cruz D et al (2009) Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 42:4809–4816 Chen H, Choi J-H, Salas-de la Cruz D et al (2009) Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 42:4809–4816
3.
Zurück zum Zitat Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164 Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164
4.
Zurück zum Zitat Mayrand-Provencher L, Rochefort D (2009) Influence of the conductivity and viscosity of protic ionic liquids electrolytes on the pseudocapacitance of RuO2 electrodes. J Phys Chem C 113:1632–1639 Mayrand-Provencher L, Rochefort D (2009) Influence of the conductivity and viscosity of protic ionic liquids electrolytes on the pseudocapacitance of RuO2 electrodes. J Phys Chem C 113:1632–1639
5.
Zurück zum Zitat Zhu Q, Song Y, Zhu X et al (2007) Ionic liquid-based electrolytes for capacitor applications. J Electroanal Chem 601:229–236 Zhu Q, Song Y, Zhu X et al (2007) Ionic liquid-based electrolytes for capacitor applications. J Electroanal Chem 601:229–236
6.
Zurück zum Zitat Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146 Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146
7.
Zurück zum Zitat Ohno H, Yoshizawa M (2002) Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionics 154–155:303–309 Ohno H, Yoshizawa M (2002) Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles. Solid State Ionics 154–155:303–309
8.
Zurück zum Zitat McEwen AB, Ngo HL, LeCompte K et al (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695 McEwen AB, Ngo HL, LeCompte K et al (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695
9.
Zurück zum Zitat Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580 Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580
10.
Zurück zum Zitat Smedley SI (1980) The interpretation of conductivity in liquids. Plenum Press, New York Smedley SI (1980) The interpretation of conductivity in liquids. Plenum Press, New York
11.
Zurück zum Zitat Walden P (1906) Organic solutions- and ionisation means III. Chapter: internal friction and its connection with conductivity. Z Phys Chem-Stoch Ve 55:207–246 Walden P (1906) Organic solutions- and ionisation means III. Chapter: internal friction and its connection with conductivity. Z Phys Chem-Stoch Ve 55:207–246
12.
Zurück zum Zitat Adams WA, Laidler KJ (1968) Electrical conductivities of quaternary ammonium salts in acetone I. Pressure and temperature effects. Can J Chemistry 46:1977–1988 Adams WA, Laidler KJ (1968) Electrical conductivities of quaternary ammonium salts in acetone I. Pressure and temperature effects. Can J Chemistry 46:1977–1988
13.
Zurück zum Zitat Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution—like conductivities. Science 302:422–425 Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution—like conductivities. Science 302:422–425
14.
Zurück zum Zitat MacFarlane DR, Forsyth M, Izgorodina EI et al (2009) On the concept of ionicity in ionic liquids. Phys Chem Chem Phys 11:4962–4967 MacFarlane DR, Forsyth M, Izgorodina EI et al (2009) On the concept of ionicity in ionic liquids. Phys Chem Chem Phys 11:4962–4967
15.
Zurück zum Zitat Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of delta pK(a) from aqueous solutions. J Am Chem Soc 125:15411–15419 Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of delta pK(a) from aqueous solutions. J Am Chem Soc 125:15411–15419
16.
Zurück zum Zitat Wu T-Y, Hao L, Chen P-R et al (2013) Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte. Int J Electrochem Sci 8:2606–2624 Wu T-Y, Hao L, Chen P-R et al (2013) Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte. Int J Electrochem Sci 8:2606–2624
17.
Zurück zum Zitat Timperman L, Skowron P, Boisset A et al (2012) Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys 14:8199 Timperman L, Skowron P, Boisset A et al (2012) Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys 14:8199
18.
Zurück zum Zitat Vila J, Ginés P, Pico JM et al (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids. Fluid Phase Equilib 242:141–146 Vila J, Ginés P, Pico JM et al (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids. Fluid Phase Equilib 242:141–146
19.
Zurück zum Zitat Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic-conductivity in alkali-metal salts poly(ethylene oxide) adducts. Solid State Ionics 11:91–95 Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic-conductivity in alkali-metal salts poly(ethylene oxide) adducts. Solid State Ionics 11:91–95
20.
Zurück zum Zitat Druger SD, Ratner MA, Nitzan A (1983) Polymeric solid electrolytes—dynamic bond percolation and free-volume models for diffusion. Solid State Ionics 9–10:1115–1120 Druger SD, Ratner MA, Nitzan A (1983) Polymeric solid electrolytes—dynamic bond percolation and free-volume models for diffusion. Solid State Ionics 9–10:1115–1120
21.
Zurück zum Zitat Gadjourova Z, Andreev YG, Tunstall DP et al (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523 Gadjourova Z, Andreev YG, Tunstall DP et al (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523
22.
Zurück zum Zitat Ohno H, Nakai Y, Ito K (1998) Ionic conductivity of molten salts formed by polyethersalt hybrids. Chem Lett 27:15 Ohno H, Nakai Y, Ito K (1998) Ionic conductivity of molten salts formed by polyethersalt hybrids. Chem Lett 27:15
23.
Zurück zum Zitat Yoshizawa M, Ohno H (2001) Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochim Acta 46:1723–1728 Yoshizawa M, Ohno H (2001) Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochim Acta 46:1723–1728
24.
Zurück zum Zitat Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51 Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51
25.
Zurück zum Zitat Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567 Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567
26.
Zurück zum Zitat Kurzweil P, Chwistek M, Gallay R (2006) Capacitance determination and abusive aging studies of supercapacitors based on acetonitrile and ionic liquids. In: The 16th international seminar on double layer capacitors. Deerfield Beach, FL., USA Kurzweil P, Chwistek M, Gallay R (2006) Capacitance determination and abusive aging studies of supercapacitors based on acetonitrile and ionic liquids. In: The 16th international seminar on double layer capacitors. Deerfield Beach, FL., USA
27.
Zurück zum Zitat Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588:285–295 Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588:285–295
28.
Zurück zum Zitat Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555 Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555
29.
Zurück zum Zitat Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J Power Sources 112:236–246 Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J Power Sources 112:236–246
30.
Zurück zum Zitat Du Pasquier A, Plitz I, Menocal S et al (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178 Du Pasquier A, Plitz I, Menocal S et al (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178
31.
Zurück zum Zitat Perricone E, Chamas M, Lepretre JC et al (2013) Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. J Power Sources 239:217–224 Perricone E, Chamas M, Lepretre JC et al (2013) Safe and performant electrolytes for supercapacitor. Investigation of esters/carbonate mixtures. J Power Sources 239:217–224
32.
Zurück zum Zitat Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367 Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367
33.
Zurück zum Zitat Harrop P, Gonzalez F, Zhitomirsky V (2014) Electrochemical double layer supercapacitors: supercapacitors 2014–2024. IdTechEx Harrop P, Gonzalez F, Zhitomirsky V (2014) Electrochemical double layer supercapacitors: supercapacitors 2014–2024. IdTechEx
34.
Zurück zum Zitat McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86 McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86
35.
Zurück zum Zitat Hung KS, Masarapu C, Ko TH et al (2009) Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 193:944–949 Hung KS, Masarapu C, Ko TH et al (2009) Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 193:944–949
36.
Zurück zum Zitat Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718 Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718
37.
Zurück zum Zitat Masarapu C, Zeng HF, Hung KH et al (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206 Masarapu C, Zeng HF, Hung KH et al (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206
38.
Zurück zum Zitat Hastak RS, Sivaraman P, Potphode DD et al (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303 Hastak RS, Sivaraman P, Potphode DD et al (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303
39.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854 Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854
40.
Zurück zum Zitat Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053 Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053
41.
Zurück zum Zitat Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27 Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27
42.
Zurück zum Zitat Aurbach D, Gottlieb H (1989) The electrochemical-behavior of selected polar arotic systems. Electrochim Acta 34:141–156 Aurbach D, Gottlieb H (1989) The electrochemical-behavior of selected polar arotic systems. Electrochim Acta 34:141–156
43.
Zurück zum Zitat Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531 Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531
44.
Zurück zum Zitat Gu GY, Laura R, Abraham KM (1999) Conductivity-temperature behavior of organic electrolytes. Electrochem Solid St 2:486–489 Gu GY, Laura R, Abraham KM (1999) Conductivity-temperature behavior of organic electrolytes. Electrochem Solid St 2:486–489
45.
Zurück zum Zitat David RL, Frederisce HPR (1995) CRC handbook of chemistry and physics. CRC Press, New York David RL, Frederisce HPR (1995) CRC handbook of chemistry and physics. CRC Press, New York
46.
Zurück zum Zitat Ue M, Ida K, Mori S (1994) Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors. J Electrochem Soc 141:2989–2996 Ue M, Ida K, Mori S (1994) Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors. J Electrochem Soc 141:2989–2996
47.
Zurück zum Zitat Xia H, Huo C (2011) Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. Int J Smart Nano Mater 1–9. doi:10.1080/19475411.2011.623728 Xia H, Huo C (2011) Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. Int J Smart Nano Mater 1–9. doi:10.​1080/​19475411.​2011.​623728
48.
Zurück zum Zitat Long JW, Belanger D, Brousse T et al (2011) Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull 36:513–522 Long JW, Belanger D, Brousse T et al (2011) Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull 36:513–522
49.
Zurück zum Zitat Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159 Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159
50.
Zurück zum Zitat Kay RL, Evans DF (1966) The effect of solvent structure on the mobility of symmetrical ions in aqueous solutions. J Phys Chem 70:2325–2335 Kay RL, Evans DF (1966) The effect of solvent structure on the mobility of symmetrical ions in aqueous solutions. J Phys Chem 70:2325–2335
51.
Zurück zum Zitat Gilliam RJ, Graydon JW, Kirk DW et al (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrogen Energ 32:359–364 Gilliam RJ, Graydon JW, Kirk DW et al (2007) A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int J Hydrogen Energ 32:359–364
52.
Zurück zum Zitat See DM, White RE (1997) Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J Chem Eng Data 42:1266–1268 See DM, White RE (1997) Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. J Chem Eng Data 42:1266–1268
53.
Zurück zum Zitat Kraus CA (1938) The present status of the theory of electrolytes. Bull Am Math Soc 44:361–383MathSciNet Kraus CA (1938) The present status of the theory of electrolytes. Bull Am Math Soc 44:361–383MathSciNet
54.
Zurück zum Zitat Anderko A, Lencka MM (1997) Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind Eng Chem Res 36:1932–1943 Anderko A, Lencka MM (1997) Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind Eng Chem Res 36:1932–1943
55.
Zurück zum Zitat Klochko MA, Godneva MM (1959) Electrical conductivity and viscosity of aqueous solutions of NaOH and KOH. J Inorg Chem 4:964–968 Klochko MA, Godneva MM (1959) Electrical conductivity and viscosity of aqueous solutions of NaOH and KOH. J Inorg Chem 4:964–968
56.
Zurück zum Zitat Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629 Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629
57.
Zurück zum Zitat Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977 Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977
58.
Zurück zum Zitat Earle MJ, Esperanca JMSS, Gilea MA et al (2006) The distillation and volatility of ionic liquids. Nature 439:831–834 Earle MJ, Esperanca JMSS, Gilea MA et al (2006) The distillation and volatility of ionic liquids. Nature 439:831–834
59.
Zurück zum Zitat Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102 Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102
60.
Zurück zum Zitat Awad WH, Gilman JW, Nyden M et al (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11 Awad WH, Gilman JW, Nyden M et al (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11
61.
Zurück zum Zitat Ngo HL, LeCompte K, Hargens L et al (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102 Ngo HL, LeCompte K, Hargens L et al (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102
62.
Zurück zum Zitat Van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188 Van Valkenburg ME, Vaughn RL, Williams M et al (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta 425:181–188
63.
Zurück zum Zitat Kamavaram V, Reddy RG (2008) Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci 47:773–777 Kamavaram V, Reddy RG (2008) Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci 47:773–777
64.
Zurück zum Zitat Wendler F, Todi LN, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84 Wendler F, Todi LN, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84
65.
Zurück zum Zitat Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164 Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164
66.
Zurück zum Zitat Lazzari M, Mastragostino M, Soavi F (2007) Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem Commun 9:1567–1572 Lazzari M, Mastragostino M, Soavi F (2007) Capacitance response of carbons in solvent-free ionic liquid electrolytes. Electrochem Commun 9:1567–1572
67.
Zurück zum Zitat Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579 Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579
68.
Zurück zum Zitat Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083 Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083
69.
Zurück zum Zitat Vila J, Varela LM, Cabeza O (2007) Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim Acta 52:7413–7417 Vila J, Varela LM, Cabeza O (2007) Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim Acta 52:7413–7417
70.
Zurück zum Zitat Lu XH, Wang GM, Zhai T et al (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381 Lu XH, Wang GM, Zhai T et al (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381
71.
Zurück zum Zitat Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197 Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197
72.
Zurück zum Zitat Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42 Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42
73.
Zurück zum Zitat Chatterjee J, Liu T, Wang B et al (2010) Highly conductive PVA organogel electrolytes for applications of lithium batteries and electrochemical capacitors. Solid State Ionics 181:531–535 Chatterjee J, Liu T, Wang B et al (2010) Highly conductive PVA organogel electrolytes for applications of lithium batteries and electrochemical capacitors. Solid State Ionics 181:531–535
74.
Zurück zum Zitat Yoo JJ, Balakrishnan K, Huang JS et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427 Yoo JJ, Balakrishnan K, Huang JS et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427
75.
Zurück zum Zitat Kaempgen M, Chan CK, Ma J et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876 Kaempgen M, Chan CK, Ma J et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876
76.
Zurück zum Zitat Xiong GP, Meng CZ, Reifenberger RG et al (2014) Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv Energy Mater 4:1300515(1-9) Xiong GP, Meng CZ, Reifenberger RG et al (2014) Graphitic petal electrodes for all-solid-state flexible supercapacitors. Adv Energy Mater 4:1300515(1-9)
77.
Zurück zum Zitat El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475 El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475
78.
Zurück zum Zitat Lewandowski A, Skorupska K, Malinska J (2000) Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 133:265–271 Lewandowski A, Skorupska K, Malinska J (2000) Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 133:265–271
79.
Zurück zum Zitat Mohamad AA, Arof AK (2006) Effect of storage time on the properties of PVA-KOH alkaline solid polymer electrolyte system. Ionics 12:57–61 Mohamad AA, Arof AK (2006) Effect of storage time on the properties of PVA-KOH alkaline solid polymer electrolyte system. Ionics 12:57–61
80.
Zurück zum Zitat Kang YJ, Chung H, Kim W (2013) 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synth Met 166:40–44 Kang YJ, Chung H, Kim W (2013) 1.8-V flexible supercapacitors with asymmetric configuration based on manganese oxide, carbon nanotubes, and a gel electrolyte. Synth Met 166:40–44
81.
Zurück zum Zitat Patachia S, Florea C, Friedrich C et al (2009) Tailoring of poly(vinyl alcohol) cryogels properties by salts addition. Express Polym Lett 3:320–331 Patachia S, Florea C, Friedrich C et al (2009) Tailoring of poly(vinyl alcohol) cryogels properties by salts addition. Express Polym Lett 3:320–331
82.
Zurück zum Zitat Wang GM, Lu XH, Ling YC et al (2012) LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6:10296–10302 Wang GM, Lu XH, Ling YC et al (2012) LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6:10296–10302
83.
Zurück zum Zitat Yang PH, Xiao X, Li YZ et al (2013) Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7:2617–2626 Yang PH, Xiao X, Li YZ et al (2013) Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7:2617–2626
84.
Zurück zum Zitat Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2719–2743 Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2719–2743
85.
Zurück zum Zitat Ahn JH, Wang GX, Liu HK et al (2003) Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. J Power Sources 119:422–426 Ahn JH, Wang GX, Liu HK et al (2003) Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. J Power Sources 119:422–426
86.
Zurück zum Zitat McBreen J, Lee HS, Yang XQ et al (2000) New approaches to the design of polymer and liquid electrolytes for lithium batteries. J Power Sources 89:163–167 McBreen J, Lee HS, Yang XQ et al (2000) New approaches to the design of polymer and liquid electrolytes for lithium batteries. J Power Sources 89:163–167
87.
Zurück zum Zitat Lightfoot P, Mehta MA, Bruce PG (1993) Crystal-structure of the polymer electrolyte poly(ethylene oxide)3licf3so3. Science 262:883–885 Lightfoot P, Mehta MA, Bruce PG (1993) Crystal-structure of the polymer electrolyte poly(ethylene oxide)3licf3so3. Science 262:883–885
88.
Zurück zum Zitat Stallworth PE, Greenbaum SG, Croce F et al (1995) Li-7 Nmr and ionic-conductivity studies of gel electrolytes based on poly(methylmethacrylate). Electrochim Acta 40:2137–2141 Stallworth PE, Greenbaum SG, Croce F et al (1995) Li-7 Nmr and ionic-conductivity studies of gel electrolytes based on poly(methylmethacrylate). Electrochim Acta 40:2137–2141
89.
Zurück zum Zitat Abraham KM, Alamgir M (1993) Ambient-temperature rechargeable polymer-electrolyte batteries. J Power Sources 43:195–208 Abraham KM, Alamgir M (1993) Ambient-temperature rechargeable polymer-electrolyte batteries. J Power Sources 43:195–208
90.
Zurück zum Zitat Mohamed NS, Arof AK (2004) Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources 132:229–234 Mohamed NS, Arof AK (2004) Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources 132:229–234
91.
Zurück zum Zitat Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF-(PC plus DEC)-LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589 Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF-(PC plus DEC)-LiClO4 polymer gel electrolytes. Electrochim Acta 49:2581–2589
92.
Zurück zum Zitat Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649 Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes. Mater Lett 58:641–649
93.
Zurück zum Zitat Yang C-C, Lin S-J (2002) Preparation of composite alkaline polymer electrolyte. Mater Lett 57:873–881 Yang C-C, Lin S-J (2002) Preparation of composite alkaline polymer electrolyte. Mater Lett 57:873–881
94.
Zurück zum Zitat Bohnke O, Rousselot C, Gillet PA et al (1992) Gel electrolyte for solid-state electrochromic cell. J Electrochem Soc 139:1862–1865 Bohnke O, Rousselot C, Gillet PA et al (1992) Gel electrolyte for solid-state electrochromic cell. J Electrochem Soc 139:1862–1865
95.
Zurück zum Zitat Kato Y, Hasumi K, Yokoyama S et al (2002) Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability. Solid State Ionics 150:355–361 Kato Y, Hasumi K, Yokoyama S et al (2002) Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability. Solid State Ionics 150:355–361
96.
Zurück zum Zitat Song M-K, Kim Y-T, Kim YT et al (2003) Thermally stable gel polymer electrolytes. J Electrochem Soc 150:A439 Song M-K, Kim Y-T, Kim YT et al (2003) Thermally stable gel polymer electrolytes. J Electrochem Soc 150:A439
97.
Zurück zum Zitat Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191 Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191
98.
Zurück zum Zitat Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:33091–33113 Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:33091–33113
99.
Zurück zum Zitat Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40:907–925 Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40:907–925
100.
Zurück zum Zitat Lu JM, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448 Lu JM, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448
101.
Zurück zum Zitat Yuan JY, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482 Yuan JY, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482
102.
Zurück zum Zitat Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648 Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648
103.
Zurück zum Zitat Green O, Grubjesic S, Lee SW et al (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360 Green O, Grubjesic S, Lee SW et al (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360
104.
Zurück zum Zitat Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749 Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749
105.
Zurück zum Zitat Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504 Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504
106.
Zurück zum Zitat Ohno H, Yoshizawa M, Ogihara W (2003) A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 48:2079–2083 Ohno H, Yoshizawa M, Ogihara W (2003) A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture. Electrochim Acta 48:2079–2083
107.
Zurück zum Zitat Gray FM (1991) Solid polymer electrolytes. New York Gray FM (1991) Solid polymer electrolytes. New York
108.
Zurück zum Zitat Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124:225–230 Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124:225–230
109.
Zurück zum Zitat Mitra S, Shukla AK, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218 Mitra S, Shukla AK, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218
110.
Zurück zum Zitat Pradhan DK, Samantaray BK, Choudhary RNP et al (2005) Effect of plasticizer on structure—property relationship in composite polymer electrolytes. J Power Sources 139:384–393 Pradhan DK, Samantaray BK, Choudhary RNP et al (2005) Effect of plasticizer on structure—property relationship in composite polymer electrolytes. J Power Sources 139:384–393
111.
Zurück zum Zitat Kreuer KD, Paddison SJ, Spohr E et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678 Kreuer KD, Paddison SJ, Spohr E et al (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678
112.
Zurück zum Zitat Breslau BR, Miller IF (1971) A hydrodynamic model for electroosmosis. Ind Eng Chem Fundam 10:554–565 Breslau BR, Miller IF (1971) A hydrodynamic model for electroosmosis. Ind Eng Chem Fundam 10:554–565
113.
Zurück zum Zitat Depre L, Ingram M, Poinsignon C et al (2000) Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices. Electrochim Acta 45:1377–1383 Depre L, Ingram M, Poinsignon C et al (2000) Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices. Electrochim Acta 45:1377–1383
114.
Zurück zum Zitat Ramya CS, Selvasekarapandian S, Savitha T et al (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677 Ramya CS, Selvasekarapandian S, Savitha T et al (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42:2672–2677
115.
Zurück zum Zitat Lewandowski A, Zajder M, Frackowiak E et al (2001) Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochim Acta 46:2777–2780 Lewandowski A, Zajder M, Frackowiak E et al (2001) Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochim Acta 46:2777–2780
116.
Zurück zum Zitat Zhang GQ, Zhang XG (2003) A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte. Solid State Ionics 160:155–159 Zhang GQ, Zhang XG (2003) A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte. Solid State Ionics 160:155–159
117.
Zurück zum Zitat Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261 Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261
118.
Zurück zum Zitat Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294 Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294
119.
Zurück zum Zitat Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 751–752 Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 751–752
120.
Zurück zum Zitat Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13:589–594 Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13:589–594
121.
Zurück zum Zitat Sekhon SS, Lalia BS, Park J-S et al (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256 Sekhon SS, Lalia BS, Park J-S et al (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256
122.
Zurück zum Zitat Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442:74–77 Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442:74–77
123.
Zurück zum Zitat Fan LZ, Nan CW, Zhao SJ (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164:81–86 Fan LZ, Nan CW, Zhao SJ (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164:81–86
124.
Zurück zum Zitat Ahmad S, Bohidar HB, Ahmad S et al (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590 Ahmad S, Bohidar HB, Ahmad S et al (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590
125.
Zurück zum Zitat Nan C-W, Smith DM (1991) A.c. electrical properties of composite solid electrolytes. Mater Sci Eng B 10:99–106 Nan C-W, Smith DM (1991) A.c. electrical properties of composite solid electrolytes. Mater Sci Eng B 10:99–106
126.
Zurück zum Zitat Wieczorek W, Raducha D, Zalewska A et al (1998) Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J Phys Chem B 102:8725–8731 Wieczorek W, Raducha D, Zalewska A et al (1998) Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J Phys Chem B 102:8725–8731
127.
Zurück zum Zitat Nan CW, Fan LZ, Lin YH et al (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104 Nan CW, Fan LZ, Lin YH et al (2003) Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys Rev Lett 91:266104
128.
Zurück zum Zitat Choi B-K, Kim Y-W, Shin K-H (1997) Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes. J Power Sources 68:357–360 Choi B-K, Kim Y-W, Shin K-H (1997) Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes. J Power Sources 68:357–360
129.
Zurück zum Zitat Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178:439–445 Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178:439–445
130.
Zurück zum Zitat Halla JD, Mamak M, Williams DE et al (2003) Meso-SiO(2)-C(12)EO(10)OH-CF(3)SO(3)H—a novel proton-conducting solid electrolyte. Adv Funct Mater 13:133–138 Halla JD, Mamak M, Williams DE et al (2003) Meso-SiO(2)-C(12)EO(10)OH-CF(3)SO(3)H—a novel proton-conducting solid electrolyte. Adv Funct Mater 13:133–138
131.
Zurück zum Zitat Kanamura K, Mitsui T, Munakata H (2005) Preparation of composite membrane between a uniform porous silica matrix and injected proton conductive gel polymer. Chem Mater 17:4845–4851 Kanamura K, Mitsui T, Munakata H (2005) Preparation of composite membrane between a uniform porous silica matrix and injected proton conductive gel polymer. Chem Mater 17:4845–4851
132.
Zurück zum Zitat Yang JY, Shen PK, Varcoe J et al (2009) Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J Power Sources 189:1016–1019 Yang JY, Shen PK, Varcoe J et al (2009) Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J Power Sources 189:1016–1019
133.
Zurück zum Zitat Klemens PG, Pedraza DF (1994) Thermal-conductivity of graphite in the basal-plane. Carbon 32:735–741 Klemens PG, Pedraza DF (1994) Thermal-conductivity of graphite in the basal-plane. Carbon 32:735–741
134.
Zurück zum Zitat Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907 Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907
135.
Zurück zum Zitat Hu XJ, Padilla AA, Xu J et al (2006) 3-omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Trans-T Asme 128:1109–1113 Hu XJ, Padilla AA, Xu J et al (2006) 3-omega measurements of vertically oriented carbon nanotubes on silicon. J Heat Trans-T Asme 128:1109–1113
136.
Zurück zum Zitat Hauge HH, Presser V, Burheim O (2014) In-situ and ex-situ measurements of thermal conductivity of supercapacitors. Energy 78:373–383 Hauge HH, Presser V, Burheim O (2014) In-situ and ex-situ measurements of thermal conductivity of supercapacitors. Energy 78:373–383
137.
Zurück zum Zitat Gualous H, Gallay R (2013) Supercapacitor module sizing and heat management under electric, thermal, and aging constraints. Wiley, KGaA Gualous H, Gallay R (2013) Supercapacitor module sizing and heat management under electric, thermal, and aging constraints. Wiley, KGaA
138.
Zurück zum Zitat Cacciola G, Restuccia G, Mercadante L (1995) Composites of activated carbon for refrigeration adsorption machines. Carbon 33:1205–1210 Cacciola G, Restuccia G, Mercadante L (1995) Composites of activated carbon for refrigeration adsorption machines. Carbon 33:1205–1210
139.
Zurück zum Zitat Burheim OS, Aslan M, Atchison JS et al (2014) Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. J Power Sources 246:160–166 Burheim OS, Aslan M, Atchison JS et al (2014) Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. J Power Sources 246:160–166
140.
Zurück zum Zitat Burheim OS, Onsrud MA, Pharoah JG et al (2014) Thermal conductivity, heat sources and temperature profiles of Li-ion batteries. ECS Trans 58:145–171 Burheim OS, Onsrud MA, Pharoah JG et al (2014) Thermal conductivity, heat sources and temperature profiles of Li-ion batteries. ECS Trans 58:145–171
141.
Zurück zum Zitat Alrashdan A, Mayyas AT, Al-Hallaj S (2010) Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. J Mater Process Tech 210:174–179 Alrashdan A, Mayyas AT, Al-Hallaj S (2010) Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs. J Mater Process Tech 210:174–179
142.
Zurück zum Zitat Robinson F, Cevallos JG, Bar-Cohen A et al (2011) Modeling and validation of a prototype thermally-enhanced polymer heat exchanger. In: Proceedings of the ASME international mechanical engineering congress and exposition, vol 1, pp 597–606 Robinson F, Cevallos JG, Bar-Cohen A et al (2011) Modeling and validation of a prototype thermally-enhanced polymer heat exchanger. In: Proceedings of the ASME international mechanical engineering congress and exposition, vol 1, pp 597–606
143.
Zurück zum Zitat Burheim O, Vie PJS, Pharoah JG et al (2010) Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J Power Sources 195:249–256 Burheim O, Vie PJS, Pharoah JG et al (2010) Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J Power Sources 195:249–256
144.
Zurück zum Zitat Burheim OS, Pharoah JG, Lampert H et al (2011) Through-plane thermal conductivity of pemfc porous transport layers. J Fuel Cell Sci Technol 8:021013 Burheim OS, Pharoah JG, Lampert H et al (2011) Through-plane thermal conductivity of pemfc porous transport layers. J Fuel Cell Sci Technol 8:021013
145.
Zurück zum Zitat Yamaki J, Takatsuji H, Kawamura T et al (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ionics 148:241–245 Yamaki J, Takatsuji H, Kawamura T et al (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ionics 148:241–245
146.
Zurück zum Zitat Roth EP, Doughty DH, Franklin J (2004) DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J Power Sources 134:222–234 Roth EP, Doughty DH, Franklin J (2004) DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J Power Sources 134:222–234
147.
Zurück zum Zitat Maleki H, Deng GP, Anani A et al (1999) Thermal stability studies of Li-ion cells and components. J Electrochem Soc 146:3224–3229 Maleki H, Deng GP, Anani A et al (1999) Thermal stability studies of Li-ion cells and components. J Electrochem Soc 146:3224–3229
148.
Zurück zum Zitat Wu ZS, Ren WC, Gao LB et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417 Wu ZS, Ren WC, Gao LB et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417
149.
Zurück zum Zitat delaPuente G, Pis JJ, Menendez JA et al (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrol 43:125–138 delaPuente G, Pis JJ, Menendez JA et al (1997) Thermal stability of oxygenated functions in activated carbons. J Anal Appl Pyrol 43:125–138
150.
Zurück zum Zitat Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309 Ragupathy P, Park DH, Campet G et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309
151.
Zurück zum Zitat Kim IH, Kim KB (2006) Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc 153:A383–A389 Kim IH, Kim KB (2006) Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J Electrochem Soc 153:A383–A389
152.
Zurück zum Zitat Jia QX, Song SG, Wu XD et al (1996) Epitaxial growth of highly conductive RuO2 thin films on (100) Si. Appl Phys Lett 68:1069–1071 Jia QX, Song SG, Wu XD et al (1996) Epitaxial growth of highly conductive RuO2 thin films on (100) Si. Appl Phys Lett 68:1069–1071
153.
Zurück zum Zitat Sakiyama K, Onishi S, Ishihara K et al (1993) Deposition and properties of reactively sputtered ruthenium dioxide films. J Electrochem Soc 140:834–839 Sakiyama K, Onishi S, Ishihara K et al (1993) Deposition and properties of reactively sputtered ruthenium dioxide films. J Electrochem Soc 140:834–839
154.
Zurück zum Zitat Dmowski W, Egami T, Swider-Lyons KE et al (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106:12677–12683 Dmowski W, Egami T, Swider-Lyons KE et al (2002) Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J Phys Chem B 106:12677–12683
155.
Zurück zum Zitat Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290 Hu CC, Chen WC, Chang KH (2004) How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc 151:A281–A290
156.
Zurück zum Zitat Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12 Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12
157.
Zurück zum Zitat Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44:101–108 Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44:101–108
158.
Zurück zum Zitat Hagiwara T, Yamaura M, Iwata K (1988) Thermal-stability of polyaniline. Synth Met 25:243–252 Hagiwara T, Yamaura M, Iwata K (1988) Thermal-stability of polyaniline. Synth Met 25:243–252
159.
Zurück zum Zitat Shi S, Xu C, Yang C et al (2013) Flexible supercapacitors. Particuology 11:371–377 Shi S, Xu C, Yang C et al (2013) Flexible supercapacitors. Particuology 11:371–377
160.
Zurück zum Zitat Ruiz V, Blanco C, Granda M et al (2007) Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. J Appl Electrochem 37:717–721 Ruiz V, Blanco C, Granda M et al (2007) Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. J Appl Electrochem 37:717–721
161.
Zurück zum Zitat Ruiz V, Blanco C, Granda M et al (2008) Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors. J Electroanal Chem 618:17–23 Ruiz V, Blanco C, Granda M et al (2008) Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors. J Electroanal Chem 618:17–23
162.
Zurück zum Zitat Luo J, Glatkowski P, Wallis P (2005) Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes. United States Luo J, Glatkowski P, Wallis P (2005) Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes. United States
163.
Zurück zum Zitat Maleki H, Deng GP, Kerzhner-Haller I et al (2000) Thermal stability studies of binder materials in anodes for lithium-ion batteries. J Electrochem Soc 147:4470–4475 Maleki H, Deng GP, Kerzhner-Haller I et al (2000) Thermal stability studies of binder materials in anodes for lithium-ion batteries. J Electrochem Soc 147:4470–4475
164.
Zurück zum Zitat Guerfi A, Kaneko M, Petitclerc M et al (2007) LiFePO4 water-soluble binder electrode for Li-ion batteries. J Power Sources 163:1047–1052 Guerfi A, Kaneko M, Petitclerc M et al (2007) LiFePO4 water-soluble binder electrode for Li-ion batteries. J Power Sources 163:1047–1052
165.
Zurück zum Zitat Li J, Christensen L, Obrovac MN et al (2008) Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J Electrochem Soc 155:A234–A238 Li J, Christensen L, Obrovac MN et al (2008) Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J Electrochem Soc 155:A234–A238
166.
Zurück zum Zitat Maletin Y (2004) Supercapacitor and a method of manufacturing such a supercapacitor. In Google Patents, United States Maletin Y (2004) Supercapacitor and a method of manufacturing such a supercapacitor. In Google Patents, United States
167.
Zurück zum Zitat Zhang SS, Xu K, Jow TR (2004) Evaluation on a water-based binder for the graphite anode of Li-ion batteries. J Power Sources 138:226–231 Zhang SS, Xu K, Jow TR (2004) Evaluation on a water-based binder for the graphite anode of Li-ion batteries. J Power Sources 138:226–231
168.
Zurück zum Zitat Chou SL, Pan Y, Wang JZ et al (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16:20347–20359 Chou SL, Pan Y, Wang JZ et al (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16:20347–20359
169.
Zurück zum Zitat Ohta N, Sogabe T, Kuroda K (2001) A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity. Carbon 39:1421–1446 Ohta N, Sogabe T, Kuroda K (2001) A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity. Carbon 39:1421–1446
170.
Zurück zum Zitat Oskam G, Searson PC, Jow TR (1999) Sol-gel synthesis of carbon/silica gel electrodes for lithium intercalation. Electrochem Solid-State Lett 2:610–612 Oskam G, Searson PC, Jow TR (1999) Sol-gel synthesis of carbon/silica gel electrodes for lithium intercalation. Electrochem Solid-State Lett 2:610–612
171.
Zurück zum Zitat Gamby J, Taberna PL, Simon P et al (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116 Gamby J, Taberna PL, Simon P et al (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116
172.
Zurück zum Zitat Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269 Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269
173.
Zurück zum Zitat Hsieh C-T, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40:667–674 Hsieh C-T, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40:667–674
174.
Zurück zum Zitat Chen W, Rakhi RB, Hu LB et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172 Chen W, Rakhi RB, Hu LB et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172
175.
Zurück zum Zitat Zhang GQ, Wu HB, Hoster HE et al (2012) Single-crystalline NiCO2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energ Environ Sci 5:9453–9456 Zhang GQ, Wu HB, Hoster HE et al (2012) Single-crystalline NiCO2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energ Environ Sci 5:9453–9456
176.
Zurück zum Zitat Xiong GP, Hembram KPSS, Reifenberger RG et al (2013) MnO2-coated graphitic petals for supercapacitor electrodes. J Power Sources 227:254–259 Xiong GP, Hembram KPSS, Reifenberger RG et al (2013) MnO2-coated graphitic petals for supercapacitor electrodes. J Power Sources 227:254–259
177.
Zurück zum Zitat Liu B, Shioyama H, Jiang H et al (2010) Metal organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitors. Carbon 48:456–463 Liu B, Shioyama H, Jiang H et al (2010) Metal organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitors. Carbon 48:456–463
178.
Zurück zum Zitat Seo DH, Han ZJ, Kumar S et al (2013) Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv Energy Mater 3:1316–1323 Seo DH, Han ZJ, Kumar S et al (2013) Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv Energy Mater 3:1316–1323
179.
Zurück zum Zitat Pech D, Brunet M, Durou H et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654 Pech D, Brunet M, Durou H et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654
180.
Zurück zum Zitat Picóa F, Rojoa JM, Sanjuán ML et al (2011) Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. J Electrochem Soc 151:A831–A837 Picóa F, Rojoa JM, Sanjuán ML et al (2011) Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. J Electrochem Soc 151:A831–A837
181.
Zurück zum Zitat Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem Solid State 5:A227–A230 Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem Solid State 5:A227–A230
182.
Zurück zum Zitat Brousse T, Taberna PL, Crosnier O et al (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173:633–641 Brousse T, Taberna PL, Crosnier O et al (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173:633–641
183.
Zurück zum Zitat Ji J, Zhang LL, Ji H et al (2013) Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243MathSciNet Ji J, Zhang LL, Ji H et al (2013) Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243MathSciNet
184.
Zurück zum Zitat Portet C, Taberna PL, Simon P et al (2004) Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim Acta 49:905–912 Portet C, Taberna PL, Simon P et al (2004) Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim Acta 49:905–912
185.
Zurück zum Zitat Balducci A, Dugas R, Taberna PL et al (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927 Balducci A, Dugas R, Taberna PL et al (2007) High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927
186.
Zurück zum Zitat Taberna L, Mitra S, Poizot P et al (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573 Taberna L, Mitra S, Poizot P et al (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573
187.
Zurück zum Zitat Fischer AE, Pettigrew KA, Rolison DR et al (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett 7:281–286 Fischer AE, Pettigrew KA, Rolison DR et al (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett 7:281–286
188.
Zurück zum Zitat Bao LH, Zang JF, Li XD (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220 Bao LH, Zang JF, Li XD (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220
189.
Zurück zum Zitat Meng C, Liu C, Chen L et al (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031 Meng C, Liu C, Chen L et al (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031
190.
Zurück zum Zitat Wu Q, Xu YX, Yao ZY et al (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970 Wu Q, Xu YX, Yao ZY et al (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970
191.
Zurück zum Zitat Bhuvana T, Kumar A, Sood A et al (2010) Contiguous petal-like carbon nanosheet outgrowths from graphite fibers by plasma CVD. ACS Appl Mater Inter 2:644–648 Bhuvana T, Kumar A, Sood A et al (2010) Contiguous petal-like carbon nanosheet outgrowths from graphite fibers by plasma CVD. ACS Appl Mater Inter 2:644–648
192.
Zurück zum Zitat Orendorff CJ (2012) The role of separators in lithium-ion cell safety. Elecrochem Soc Interface 21:61–65 Orendorff CJ (2012) The role of separators in lithium-ion cell safety. Elecrochem Soc Interface 21:61–65
193.
Zurück zum Zitat Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364 Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364
194.
Zurück zum Zitat Huang XS (2011) Separator technologies for lithium-ion batteries. J Solid State Electr 15:649–662 Huang XS (2011) Separator technologies for lithium-ion batteries. J Solid State Electr 15:649–662
195.
Zurück zum Zitat Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462 Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462
196.
Zurück zum Zitat Bohnstedt W (2004) A review of future directions in automotive battery separators. J Power Sources 133:59–66 Bohnstedt W (2004) A review of future directions in automotive battery separators. J Power Sources 133:59–66
197.
Zurück zum Zitat Uchida I, Ishikawa H, Mohamedi M et al (2003) AC-impedance measurements during thermal runaway process in several lithium/polymer batteries. J Power Sources 119:821–825 Uchida I, Ishikawa H, Mohamedi M et al (2003) AC-impedance measurements during thermal runaway process in several lithium/polymer batteries. J Power Sources 119:821–825
198.
Zurück zum Zitat Cho TH, Tanaka M, Onishi H et al (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181:155–160 Cho TH, Tanaka M, Onishi H et al (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181:155–160
199.
Zurück zum Zitat Golebiewski J, Galeski A (2007) Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Compos Sci Technol 67:3442–3447 Golebiewski J, Galeski A (2007) Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Compos Sci Technol 67:3442–3447
200.
Zurück zum Zitat Laman FC, Gee MA, Denovan J (1993) Impedance studies for separators in rechargeable lithium batteries. J Electrochem Soc 140:L51–L53 Laman FC, Gee MA, Denovan J (1993) Impedance studies for separators in rechargeable lithium batteries. J Electrochem Soc 140:L51–L53
201.
Zurück zum Zitat Koksbang R, Olsen II, Shackle D (1994) Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 69:320–335 Koksbang R, Olsen II, Shackle D (1994) Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 69:320–335
202.
Zurück zum Zitat Andriyko YO, Reischl W, Nauer GE (2009) Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J Chem Eng Data 54:855–860 Andriyko YO, Reischl W, Nauer GE (2009) Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J Chem Eng Data 54:855–860
203.
Zurück zum Zitat Yu HJ, Tang QQ, Wu JH et al (2012) Using eggshell membrane as a separator in supercapacitor. J Power Sources 206:463–468 Yu HJ, Tang QQ, Wu JH et al (2012) Using eggshell membrane as a separator in supercapacitor. J Power Sources 206:463–468
204.
205.
Zurück zum Zitat Tonurist K, Janes A, Thomberg T et al (2009) Influence of mesoporous separator properties on the parameters of electrical double-layer capacitor single cells. J Electrochem Soc 156:A334–A342 Tonurist K, Janes A, Thomberg T et al (2009) Influence of mesoporous separator properties on the parameters of electrical double-layer capacitor single cells. J Electrochem Soc 156:A334–A342
206.
Zurück zum Zitat Tonurist K, Thomberg T, Janes A et al (2013) Specific performance of supercapacitors at lower temperatures based on different separator materials. J Electrochem Soc 160:A449–A457 Tonurist K, Thomberg T, Janes A et al (2013) Specific performance of supercapacitors at lower temperatures based on different separator materials. J Electrochem Soc 160:A449–A457
207.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110 Tokuda H, Hayamizu K, Ishii K et al (2005) Physicochemical properties and structures of room temperature ionic liquids 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110
208.
Zurück zum Zitat Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634 Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187:627–634
209.
Zurück zum Zitat Helen M, Viswanathan B, Murthy SS (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol. J Power Sources 163:433–439 Helen M, Viswanathan B, Murthy SS (2006) Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol. J Power Sources 163:433–439
210.
Zurück zum Zitat Ramani V, Kunz HR, Fenton JM (2006) Metal dioxide supported heteropolyacid/nafion (R) composite membranes for elevated temperature/low relative humidity PEFC operation. J Membrane Sci 279:506–512 Ramani V, Kunz HR, Fenton JM (2006) Metal dioxide supported heteropolyacid/nafion (R) composite membranes for elevated temperature/low relative humidity PEFC operation. J Membrane Sci 279:506–512
211.
Zurück zum Zitat Tamada M, Ueda S, Hayashi T et al (2008) Thermally stable polymer gel electrolytes composed of branched polyimide and ionic liquid/zwitterion mixture prepared by in situ polycondensation. Chem Lett 37:86–87 Tamada M, Ueda S, Hayashi T et al (2008) Thermally stable polymer gel electrolytes composed of branched polyimide and ionic liquid/zwitterion mixture prepared by in situ polycondensation. Chem Lett 37:86–87
212.
Zurück zum Zitat Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573 Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573
213.
Zurück zum Zitat Yan F, Yu S, Zhang X et al (2009) Enhanced proton conduction in polymer electrolyte membranes as sysnthesized by polymerization of protic ionic liquid-based microemulsions. Chem Mater 21:1480–1484 Yan F, Yu S, Zhang X et al (2009) Enhanced proton conduction in polymer electrolyte membranes as sysnthesized by polymerization of protic ionic liquid-based microemulsions. Chem Mater 21:1480–1484
214.
Zurück zum Zitat Susan MABH, Kaneko T, Noda A et al (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983 Susan MABH, Kaneko T, Noda A et al (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983
215.
Zurück zum Zitat Che JW, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69 Che JW, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69
216.
Zurück zum Zitat Hauge HH (2014) Calorimetry and exergy analysis in the context of renewable energy devices. In: Department of chemistry, 172. Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology Hauge HH (2014) Calorimetry and exergy analysis in the context of renewable energy devices. In: Department of chemistry, 172. Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology
Metadaten
Titel
Influence of Temperature on Supercapacitor Components
verfasst von
Guoping Xiong
Arpan Kundu
Timothy S. Fisher
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-20242-6_3