Skip to main content

2015 | OriginalPaper | Buchkapitel

4. Influence of Temperature on Supercapacitor Performance

verfasst von : Guoping Xiong, Arpan Kundu, Timothy S. Fisher

Erschienen in: Thermal Effects in Supercapacitors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The previous chapter considered the influence of temperature on different supercapacitor components, including electrolytes, electrodes and separators. The thermophysical properties of these components dictate the electrochemical performance of a supercapacitor at different temperatures, which is reflected by two crucial metrics-capacitance and ESR—and also others such as aging, self-discharge and leakage. For instance, the high ionic conductivity and high dissociation rate of the electrolytes at elevated temperatures facilitates ion migration towards the electric double layer [1], leading to a low ESR. Capacitance depends on the amount of ions aggregated at the interface between electrodes and electrolytes, which is determined by the effective specific surface area of the electrodes. Higher temperature promotes the migration of ions to the innermost pores of electrodes, leading to an increase in effective surface area, and thus a higher capacitance. Energy and power densities are directly related to capacitance and ESR. Aging and self-discharge are also important parameters to evaluate the performance of supercapacitors in practical applications. In this chapter, the influence of temperature on electrochemical performance including extreme-temperature performance is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hastak RS, Sivaraman P, Potphode DD et al (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303 Hastak RS, Sivaraman P, Potphode DD et al (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303
2.
Zurück zum Zitat Xiong G, Meng C, Reifenberger RG et al (2014) Graphitic petal micro-supercapacitor electrodes for ultra-high power density. Energy Technol 2:897–905 Xiong G, Meng C, Reifenberger RG et al (2014) Graphitic petal micro-supercapacitor electrodes for ultra-high power density. Energy Technol 2:897–905
3.
Zurück zum Zitat Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27 Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27
4.
Zurück zum Zitat Lewandowski A, Olejniczak A, Galinski M et al (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195:5814–5819 Lewandowski A, Olejniczak A, Galinski M et al (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195:5814–5819
5.
Zurück zum Zitat Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718 Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156:712–718
6.
Zurück zum Zitat Hung KS, Masarapu C, Ko TH et al (2009) Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 193:944–949 Hung KS, Masarapu C, Ko TH et al (2009) Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 193:944–949
7.
Zurück zum Zitat Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93 Gualous H, Bouquain D, Berthon A et al (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources 123:86–93
8.
Zurück zum Zitat Rafik F, Gualous H, Gallay R et al (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934 Rafik F, Gualous H, Gallay R et al (2007) Frequency, thermal and voltage supercapacitor characterization and modeling. J Power Sources 165:928–934
9.
Zurück zum Zitat Michel H (2006) Temperature and dynamics problems of ultracapacitors in stationary and mobile applications. J Power Sources 154:556–560 Michel H (2006) Temperature and dynamics problems of ultracapacitors in stationary and mobile applications. J Power Sources 154:556–560
10.
Zurück zum Zitat Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555 Kotz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555
11.
Zurück zum Zitat Brandon EJ, West WC, Smart MC et al (2007) Extending the low temperature operational limit of double-layer capacitors. J Power Sources 170:225–232 Brandon EJ, West WC, Smart MC et al (2007) Extending the low temperature operational limit of double-layer capacitors. J Power Sources 170:225–232
12.
Zurück zum Zitat Masarapu C, Zeng HF, Hung KH et al (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206 Masarapu C, Zeng HF, Hung KH et al (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206
13.
Zurück zum Zitat Roberts AJ, de Namor AFD, Slade RCT (2013) Low temperature water based electrolytes for MnO2/carbon supercapacitors. Phys Chem Chem Phys 15:3518–3526 Roberts AJ, de Namor AFD, Slade RCT (2013) Low temperature water based electrolytes for MnO2/carbon supercapacitors. Phys Chem Chem Phys 15:3518–3526
14.
Zurück zum Zitat Liu XR, Pickup PG (2008) Performance and low temperature behaviour of hydrous ruthenium oxide supercapacitors with improved power densities. Energ Environ Sci 1:494–500 Liu XR, Pickup PG (2008) Performance and low temperature behaviour of hydrous ruthenium oxide supercapacitors with improved power densities. Energ Environ Sci 1:494–500
15.
Zurück zum Zitat Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159 Zheng JP, Jow TR (1996) High energy and high power density electrochemical capacitors. J Power Sources 62:155–159
16.
Zurück zum Zitat Mosqueda HA, Crosnier O, Athouel L et al (2010) Electrolytes for hybrid carbon-MnO2 electrochemical capacitors. Electrochim Acta 55:7479–7483 Mosqueda HA, Crosnier O, Athouel L et al (2010) Electrolytes for hybrid carbon-MnO2 electrochemical capacitors. Electrochim Acta 55:7479–7483
17.
Zurück zum Zitat Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11:1996–1999 Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11:1996–1999
18.
Zurück zum Zitat Lu W, Qu LT, Henry K et al (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277 Lu W, Qu LT, Henry K et al (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277
19.
Zurück zum Zitat Wang H, Xu ZW, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141 Wang H, Xu ZW, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141
20.
Zurück zum Zitat Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541 Zhu YW, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541
21.
Zurück zum Zitat Liu CG, Yu ZN, Neff D et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868 Liu CG, Yu ZN, Neff D et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868
22.
Zurück zum Zitat Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13 Vivekchand SRC, Rout CS, Subrahmanyam KS et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13
23.
Zurück zum Zitat Fletcher SI, Sillars FB, Carter RC et al (2010) The effects of temperature on the performance of electrochemical double layer capacitors. J Power Sources 195:7484–7488 Fletcher SI, Sillars FB, Carter RC et al (2010) The effects of temperature on the performance of electrochemical double layer capacitors. J Power Sources 195:7484–7488
24.
Zurück zum Zitat Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49:3603–3611 Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49:3603–3611
25.
Zurück zum Zitat Yuyama K, Masuda G, Yoshida H et al (2006) Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications. J Power Sources 162:1401–1408 Yuyama K, Masuda G, Yoshida H et al (2006) Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications. J Power Sources 162:1401–1408
26.
Zurück zum Zitat McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86 McEwen AB, McDevitt SF, Koch VR (1997) Nonaqueous electrolytes for electrochemical capacitors: imidazolium cations and inorganic fluorides with organic carbonates. J Electrochem Soc 144:L84–L86
27.
Zurück zum Zitat Ue M, Takeda M, Toriumi A et al (2003) Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J Electrochem Soc 150:A499–A502 Ue M, Takeda M, Toriumi A et al (2003) Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J Electrochem Soc 150:A499–A502
28.
Zurück zum Zitat Fung YS, Zhu DR (2002) Electrodeposited tin coating as negative electrode material for lithium-ion battery in room temperature molten salt. J Electrochem Soc 149:A319 Fung YS, Zhu DR (2002) Electrodeposited tin coating as negative electrode material for lithium-ion battery in room temperature molten salt. J Electrochem Soc 149:A319
29.
Zurück zum Zitat Hayashi K, Nemoto Y, Akuto K et al (2005) Alkylated imidazolium salt electrolyte for lithium cells. J Power Sources 146:689–692 Hayashi K, Nemoto Y, Akuto K et al (2005) Alkylated imidazolium salt electrolyte for lithium cells. J Power Sources 146:689–692
30.
Zurück zum Zitat Ishikawa M, Sugimoto T, Kikuta M et al (2006) Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources 162:658–662 Ishikawa M, Sugimoto T, Kikuta M et al (2006) Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources 162:658–662
31.
Zurück zum Zitat Lewandowski A, Swiderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J Power Sources 194:601–609 Lewandowski A, Swiderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J Power Sources 194:601–609
32.
Zurück zum Zitat Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579 Arbizzani C, Biso M, Cericola D et al (2008) Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources 185:1575–1579
33.
Zurück zum Zitat Xu B, Wu F, Chen RJ et al (2006) Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. J Power Sources 158:773–778 Xu B, Wu F, Chen RJ et al (2006) Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. J Power Sources 158:773–778
34.
Zurück zum Zitat Lin RY, Taberna PL, Fantini S et al (2011) Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J Phys Chem Lett 2:2396–2401 Lin RY, Taberna PL, Fantini S et al (2011) Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J Phys Chem Lett 2:2396–2401
35.
Zurück zum Zitat Voice AM, Davies GR, Ward IM (1997) Structure of poly(vinylidene fluoride) gel electrolytes. Polym Gels Netw 5:123–144 Voice AM, Davies GR, Ward IM (1997) Structure of poly(vinylidene fluoride) gel electrolytes. Polym Gels Netw 5:123–144
36.
Zurück zum Zitat Voice AM, Southall JP, Rogers V et al (1994) Thermoreversible polymer gel electrolytes. Polymer 35:3363–3372 Voice AM, Southall JP, Rogers V et al (1994) Thermoreversible polymer gel electrolytes. Polymer 35:3363–3372
37.
Zurück zum Zitat Bohnke O, Rousselot C, Gillet PA et al (1992) Gel electrolyte for solid-state electrochromic cell. J Electrochem Soc 139:1862–1865 Bohnke O, Rousselot C, Gillet PA et al (1992) Gel electrolyte for solid-state electrochromic cell. J Electrochem Soc 139:1862–1865
38.
Zurück zum Zitat Osaka T, Liu XJ, Nojima M et al (1999) An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J Electrochem Soc 146:1724–1729 Osaka T, Liu XJ, Nojima M et al (1999) An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J Electrochem Soc 146:1724–1729
39.
Zurück zum Zitat Lewandowski A, Skorupska K, Malinska J (2000) Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 133:265–271 Lewandowski A, Skorupska K, Malinska J (2000) Novel poly(vinyl alcohol)-KOH-H2O alkaline polymer electrolyte. Solid State Ionics 133:265–271
40.
Zurück zum Zitat Yuan CZ, Zhang XG, Wu QF et al (2006) Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177:1237–1242 Yuan CZ, Zhang XG, Wu QF et al (2006) Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics 177:1237–1242
41.
Zurück zum Zitat Hastak RS, Sivaraman P, Potphode DD et al (2012) High temperature all solid state supercapacitor based on multi-walled carbon nanotubes and poly[2,5 benzimidazole]. J Solid State Electr 16:3215–3226 Hastak RS, Sivaraman P, Potphode DD et al (2012) High temperature all solid state supercapacitor based on multi-walled carbon nanotubes and poly[2,5 benzimidazole]. J Solid State Electr 16:3215–3226
42.
Zurück zum Zitat Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573 Liu XH, Wen ZB, Wu DB et al (2014) Tough BMIMCl-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. J Mater Chem A 2:11569–11573
43.
Zurück zum Zitat Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367 Lu W, Henry K, Turchi C et al (2008) Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc 155:A361–A367
44.
45.
Zurück zum Zitat Rosero JA, Ortega JA, Aldabas E et al (2007) Moving towards a more electric aircraft. Ieee Aero El Sys Mag 22:3–9 Rosero JA, Ortega JA, Aldabas E et al (2007) Moving towards a more electric aircraft. Ieee Aero El Sys Mag 22:3–9
46.
Zurück zum Zitat Plichta EJ, Hendrickson M, Thompson R et al (2001) Development of low temperature Li-ion electrolytes for NASA and DOD applications. J Power Sources 94:160–162 Plichta EJ, Hendrickson M, Thompson R et al (2001) Development of low temperature Li-ion electrolytes for NASA and DOD applications. J Power Sources 94:160–162
47.
Zurück zum Zitat Nagasubramaniam G (2001) Electrical characteristics of 18650 Li-ion cells at low temperatures. J Appl Phys 31:99–104 Nagasubramaniam G (2001) Electrical characteristics of 18650 Li-ion cells at low temperatures. J Appl Phys 31:99–104
48.
Zurück zum Zitat Hp Lin, Chua D, Salomon M et al (2001) Low-temperature behavior of li-ion cells. Electrochem Solid-State Lett 4:A71 Hp Lin, Chua D, Salomon M et al (2001) Low-temperature behavior of li-ion cells. Electrochem Solid-State Lett 4:A71
49.
Zurück zum Zitat Ratnakumar BV, Smart MC, Huang CK et al (2000) Lithium ion batteries for Mars exploration missions. Electrochim Acta 45:1513–1517 Ratnakumar BV, Smart MC, Huang CK et al (2000) Lithium ion batteries for Mars exploration missions. Electrochim Acta 45:1513–1517
50.
Zurück zum Zitat Huang C-K, Sakamoto JS, Wolfenstine J et al (2000) The limits of low-temperature performance of li-ion cells. J Electrochem Soc 147:2893–2896 Huang C-K, Sakamoto JS, Wolfenstine J et al (2000) The limits of low-temperature performance of li-ion cells. J Electrochem Soc 147:2893–2896
51.
Zurück zum Zitat Smart MC, Ratnakumar BV, Whitcanack LD et al (2003) Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J Power Sources 119:349–358 Smart MC, Ratnakumar BV, Whitcanack LD et al (2003) Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J Power Sources 119:349–358
52.
Zurück zum Zitat Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv Mater 17:125–128 Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv Mater 17:125–128
53.
Zurück zum Zitat Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49:1057–1061 Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49:1057–1061
54.
Zurück zum Zitat Aurbach D, Markovsky B, Rodkin A et al (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47:1899–1911 Aurbach D, Markovsky B, Rodkin A et al (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47:1899–1911
55.
Zurück zum Zitat Ue M, Mori S (1995) Mobility and Ionic Association of Lithium Salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J Electrochem Soc 142:2577–2581 Ue M, Mori S (1995) Mobility and Ionic Association of Lithium Salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J Electrochem Soc 142:2577–2581
56.
Zurück zum Zitat EinEli Y, Thomas Stacey R, Koch V (1996) Ethylmethylcarbonate, a promising solvent for li-ion rechargable batteries. J Electrochem Soc 143:L273–L277 EinEli Y, Thomas Stacey R, Koch V (1996) Ethylmethylcarbonate, a promising solvent for li-ion rechargable batteries. J Electrochem Soc 143:L273–L277
57.
Zurück zum Zitat Tikhonov K, Koch VR (2006) Li-ion battery electrolytes designed for a wide temperature range. Covalent Associates Inc, Woburn Tikhonov K, Koch VR (2006) Li-ion battery electrolytes designed for a wide temperature range. Covalent Associates Inc, Woburn
58.
Zurück zum Zitat Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51 Xiong GP, Meng CZ, Reifenberger RG et al (2014) A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26:30–51
59.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854 Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854
60.
Zurück zum Zitat Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New York Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New York
61.
Zurück zum Zitat Lawrence JS, Ashley MCB, Hengst S et al (2009) The PLATO Dome A site-testing observatory: power generation and control systems. Rev Sci Instrum 80:064501 Lawrence JS, Ashley MCB, Hengst S et al (2009) The PLATO Dome A site-testing observatory: power generation and control systems. Rev Sci Instrum 80:064501
62.
Zurück zum Zitat Matthews JP, Smith AJ, Smith ID (1979) A remote unmanned ELF VLF goniometer receiver in Antarctica. Planet Space Sci 27:1391–1401 Matthews JP, Smith AJ, Smith ID (1979) A remote unmanned ELF VLF goniometer receiver in Antarctica. Planet Space Sci 27:1391–1401
63.
Zurück zum Zitat Huang PH, Pech D, Lin RY et al (2013) On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem Commun 36:53–56 Huang PH, Pech D, Lin RY et al (2013) On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem Commun 36:53–56
64.
Zurück zum Zitat Smart MC, Ratnakumar BV, Chin KB et al (2010) Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. J Electrochem Soc 157:A1361–A1374 Smart MC, Ratnakumar BV, Chin KB et al (2010) Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. J Electrochem Soc 157:A1361–A1374
65.
Zurück zum Zitat Smart MC, Ratnakumar BV, Surampudi S (2002) Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc 149:A361–A370 Smart MC, Ratnakumar BV, Surampudi S (2002) Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc 149:A361–A370
66.
Zurück zum Zitat Smart MC, Lucht BL, Dalavi S et al (2012) The effect of additives upon the performance of MCMB/LiNixCo1-xO2 Li-Ion cells containing methyl butyrate-based wide operating temperature range electrolytes. J Electrochem Soc 159:A739–A751 Smart MC, Lucht BL, Dalavi S et al (2012) The effect of additives upon the performance of MCMB/LiNixCo1-xO2 Li-Ion cells containing methyl butyrate-based wide operating temperature range electrolytes. J Electrochem Soc 159:A739–A751
67.
Zurück zum Zitat Ding MS (2004) Liquid-solid phase diagrams of ternary and quaternary organic carbonates. J Electrochem Soc 151:A731–A738 Ding MS (2004) Liquid-solid phase diagrams of ternary and quaternary organic carbonates. J Electrochem Soc 151:A731–A738
68.
Zurück zum Zitat Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588:285–295 Jänes A, Lust E (2006) Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. J Electroanal Chem 588:285–295
69.
Zurück zum Zitat West WC, Smart MC, Brandon EJ et al (2008) Double-layer capacitor electrolytes using 1,3-dioxolane for low temperature operation. J Electrochem Soc 155:A716 West WC, Smart MC, Brandon EJ et al (2008) Double-layer capacitor electrolytes using 1,3-dioxolane for low temperature operation. J Electrochem Soc 155:A716
70.
Zurück zum Zitat Iwama E, Taberna PL, Azais P et al (2012) Characterization of commercial supercapacitors for low temperature applications. J Power Sources 219:235–239 Iwama E, Taberna PL, Azais P et al (2012) Characterization of commercial supercapacitors for low temperature applications. J Power Sources 219:235–239
71.
Zurück zum Zitat Janes A, Lust E (2005) Organic carbonate-organic ester-based non-aqueous electrolytes for electrical double layer capacitors. Electrochem Commun 7:510–514 Janes A, Lust E (2005) Organic carbonate-organic ester-based non-aqueous electrolytes for electrical double layer capacitors. Electrochem Commun 7:510–514
72.
Zurück zum Zitat Chiba K, Ueda T, Yamamoto H (2007) Highly conductive electrolytic solution for electric double-layer capacitor using dimethylcarbonate and spiro-type quaternary ammonium salt. Electrochemistry 75:668–671 Chiba K, Ueda T, Yamamoto H (2007) Highly conductive electrolytic solution for electric double-layer capacitor using dimethylcarbonate and spiro-type quaternary ammonium salt. Electrochemistry 75:668–671
73.
Zurück zum Zitat Chiba K, Ueda T, Yamamoto H (2007) Performance of electrolyte composed of spiro-type quaternary ammonium salt and electric double-layer capacitor using it. Electrochemistry 75:664–667 Chiba K, Ueda T, Yamamoto H (2007) Performance of electrolyte composed of spiro-type quaternary ammonium salt and electric double-layer capacitor using it. Electrochemistry 75:664–667
74.
Zurück zum Zitat Korenblit Y, Kajdos A, West WC et al (2012) In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv Funct Mater 22:1655–1662 Korenblit Y, Kajdos A, West WC et al (2012) In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv Funct Mater 22:1655–1662
75.
Zurück zum Zitat Angell CA, Xu W, Yoshizawa M et al (2005) Electrochemical aspects of ionicliquids (Chapter 2). Wiley-Interscience, Hoboken, New Jersey Angell CA, Xu W, Yoshizawa M et al (2005) Electrochemical aspects of ionicliquids (Chapter 2). Wiley-Interscience, Hoboken, New Jersey
76.
Zurück zum Zitat Tsai W-Y, Lin R, Murali S et al (2013) Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2:403–411 Tsai W-Y, Lin R, Murali S et al (2013) Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2:403–411
77.
Zurück zum Zitat Vellacheri R, Al-Haddad A, Zhao H et al (2014) High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy 8:231–237 Vellacheri R, Al-Haddad A, Zhao H et al (2014) High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy 8:231–237
78.
Zurück zum Zitat Su LH, Gong LY, Zhao Y (2014) A new strategy to enhance low-temperature capacitance: combination of two charge-storage mechanisms. Phys Chem Chem Phys 16:681–684 Su LH, Gong LY, Zhao Y (2014) A new strategy to enhance low-temperature capacitance: combination of two charge-storage mechanisms. Phys Chem Chem Phys 16:681–684
79.
Zurück zum Zitat Roldan S, Blanco C, Granda M et al (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem 50:1699–1701 Roldan S, Blanco C, Granda M et al (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem 50:1699–1701
80.
Zurück zum Zitat Senthilkumar ST, Selvan RK, Lee YS et al (2013) Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J Mater Chem A 1:1086 Senthilkumar ST, Selvan RK, Lee YS et al (2013) Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J Mater Chem A 1:1086
81.
Zurück zum Zitat Roldán S, Granda M, Menéndez R et al (2011) Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J Phys Chem C 115:17606–17611 Roldán S, Granda M, Menéndez R et al (2011) Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J Phys Chem C 115:17606–17611
82.
Zurück zum Zitat Yu H, Wu J, Fan L et al (2011) Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim Acta 56:6881–6886 Yu H, Wu J, Fan L et al (2011) Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim Acta 56:6881–6886
83.
Zurück zum Zitat Lota G, Frackowiak E (2009) Striking capacitance of carbon/iodide interface. Electrochem Commun 11:87–90 Lota G, Frackowiak E (2009) Striking capacitance of carbon/iodide interface. Electrochem Commun 11:87–90
84.
Zurück zum Zitat Su LH, Gong LY, Lu HT et al (2014) Enhanced low-temperature capacitance of MnO2 nanorods in a redox-active electrolyte. J Power Sources 248:212–217 Su LH, Gong LY, Lu HT et al (2014) Enhanced low-temperature capacitance of MnO2 nanorods in a redox-active electrolyte. J Power Sources 248:212–217
85.
Zurück zum Zitat Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629 Armand M, Endres F, MacFarlane DR et al (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629
86.
Zurück zum Zitat Steele BCH (1999) Fuel-cell technology: running on natural gas. Nature 400:619–621 Steele BCH (1999) Fuel-cell technology: running on natural gas. Nature 400:619–621
87.
Zurück zum Zitat Kreur KD (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, London Kreur KD (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, London
88.
Zurück zum Zitat Fuller J, Breda AC, Carlin RT (1997) Ionic liquid-polymer gel electrolytes. J Electrochem Soc 144:L67–L70 Fuller J, Breda AC, Carlin RT (1997) Ionic liquid-polymer gel electrolytes. J Electrochem Soc 144:L67–L70
89.
Zurück zum Zitat Navarra MA, Panero S, Scrosati B (2005) Novel, Ionic-liquid-based, gel-type proton membranes. Electrochem Solid-State Lett 8:A324 Navarra MA, Panero S, Scrosati B (2005) Novel, Ionic-liquid-based, gel-type proton membranes. Electrochem Solid-State Lett 8:A324
90.
Zurück zum Zitat Doughty D, Roth EP (2012) A general discussion of Li ion battery safety. Electrochem Soc Interface 21:37–44 Doughty D, Roth EP (2012) A general discussion of Li ion battery safety. Electrochem Soc Interface 21:37–44
91.
Zurück zum Zitat Tobishima S-i, Yamaki J-i (1999) A consideration of lithium cell safety. J Power Sources 81–82:882–886 Tobishima S-i, Yamaki J-i (1999) A consideration of lithium cell safety. J Power Sources 81–82:882–886
92.
Zurück zum Zitat Sacken Uv, Nodwell E, Sundher A et al (1994) Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Solid State Ionics 69–70:284–290 Sacken Uv, Nodwell E, Sundher A et al (1994) Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Solid State Ionics 69–70:284–290
93.
Zurück zum Zitat Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414 Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414
94.
Zurück zum Zitat Henriksen GL, Vissers DR (1994) Lithium-aluminum/iron sulfide batteries. J Power Sources 51:115–128 Henriksen GL, Vissers DR (1994) Lithium-aluminum/iron sulfide batteries. J Power Sources 51:115–128
95.
Zurück zum Zitat Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature batteries. Solid State Ionics 104:1–11 Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature batteries. Solid State Ionics 104:1–11
96.
Zurück zum Zitat Bohlen O, Kowal J, Sauer DU (2007) Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model. J Power Sources 172:468–475 Bohlen O, Kowal J, Sauer DU (2007) Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model. J Power Sources 172:468–475
97.
Zurück zum Zitat Kurzweil P, Chwistek M (2006) Capacitance determination and abusive aging studies of supercapacitors based on acetonitrile and ionic liquids. In: The 16th international seminar on double layer capacitors. Deerfield Beach, FL Kurzweil P, Chwistek M (2006) Capacitance determination and abusive aging studies of supercapacitors based on acetonitrile and ionic liquids. In: The 16th international seminar on double layer capacitors. Deerfield Beach, FL
98.
Zurück zum Zitat Briat O, Vinassa JM, Bertrand N et al (2010) Contribution of calendar ageing modes in the performances degradation of supercapacitors during power cycling. Microelectron Reliab 50:1796–1803 Briat O, Vinassa JM, Bertrand N et al (2010) Contribution of calendar ageing modes in the performances degradation of supercapacitors during power cycling. Microelectron Reliab 50:1796–1803
99.
Zurück zum Zitat Umemura T, Mmtani Y, Okamoto T et al (2003) Life expectancy and degradation behavior of electric double layer capacitor Part I. In: 71 h international conference on properties and applications of dielectric materials, Nagoya Umemura T, Mmtani Y, Okamoto T et al (2003) Life expectancy and degradation behavior of electric double layer capacitor Part I. In: 71 h international conference on properties and applications of dielectric materials, Nagoya
100.
Zurück zum Zitat Hassane E, Brouji E, Briat O et al (2009) Impact of calendar life and cycling ageing on supercapacitor performance. IEEE Trans Veh Technol 58:3917–3929 Hassane E, Brouji E, Briat O et al (2009) Impact of calendar life and cycling ageing on supercapacitor performance. IEEE Trans Veh Technol 58:3917–3929
101.
Zurück zum Zitat Marie-Francoise JN, Gualous H, Berthon A (2006) Supercapacitor thermal- and electrical-behaviour modelling using ANN. IEEE Proc Electr Power Appl 153:255 Marie-Francoise JN, Gualous H, Berthon A (2006) Supercapacitor thermal- and electrical-behaviour modelling using ANN. IEEE Proc Electr Power Appl 153:255
102.
Zurück zum Zitat Oukaour A, Tala-Ighil B, AlSakka M et al (2013) Calendar ageing and health diagnosis of supercapacitor. Electr Power Syst Res 95:330–338 Oukaour A, Tala-Ighil B, AlSakka M et al (2013) Calendar ageing and health diagnosis of supercapacitor. Electr Power Syst Res 95:330–338
103.
Zurück zum Zitat Kotz R, Ruch PW, Cericola D (2010) Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J Power Sources 195:923–928 Kotz R, Ruch PW, Cericola D (2010) Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J Power Sources 195:923–928
104.
Zurück zum Zitat Gualous H, Gallay R, Al Sakka M et al (2012) Calendar and cycling ageing of activated carbon supercapacitor for automotive application. Microelectron Reliab 52:2477–2481 Gualous H, Gallay R, Al Sakka M et al (2012) Calendar and cycling ageing of activated carbon supercapacitor for automotive application. Microelectron Reliab 52:2477–2481
105.
Zurück zum Zitat Ayadi M, Briat O, Lallemand R et al (2014) Influence of thermal cycling on supercapacitor performance fading during ageing test at constant voltage. In: IEEE 23rd international symposium on industrial electronics. IEEE, Istanbul Ayadi M, Briat O, Lallemand R et al (2014) Influence of thermal cycling on supercapacitor performance fading during ageing test at constant voltage. In: IEEE 23rd international symposium on industrial electronics. IEEE, Istanbul
106.
Zurück zum Zitat Uno M, Tanaka K (2011) Accelerated ageing testing and cycle life prediction of supercapacitors for alternative battery applications. In: IEEE 33rd international telecommunications energy conference, pp 1–6 Uno M, Tanaka K (2011) Accelerated ageing testing and cycle life prediction of supercapacitors for alternative battery applications. In: IEEE 33rd international telecommunications energy conference, pp 1–6
107.
Zurück zum Zitat Briat O, Lajnef W, Vinassa JM et al (2006) Power cycling tests for accelerated ageing of ultracapacitors. Microelectron Reliab 46:1445–1450 Briat O, Lajnef W, Vinassa JM et al (2006) Power cycling tests for accelerated ageing of ultracapacitors. Microelectron Reliab 46:1445–1450
108.
Zurück zum Zitat Ruch PW, Cericola D, Foelske A et al (2010) A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochim Acta 55:2352–2357 Ruch PW, Cericola D, Foelske A et al (2010) A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochim Acta 55:2352–2357
109.
Zurück zum Zitat Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708 Miller JR (2006) Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 52:1703–1708
110.
Zurück zum Zitat Weighall MJ (2003) Test requirements for 42 V battery systems. J Power Sources 116:151–159 Weighall MJ (2003) Test requirements for 42 V battery systems. J Power Sources 116:151–159
111.
Zurück zum Zitat Brost RD (2002) 42-V battery requirements from an automaker’s perspective. J Power Sources 107:217–225 Brost RD (2002) 42-V battery requirements from an automaker’s perspective. J Power Sources 107:217–225
112.
Zurück zum Zitat Hardwick LJ, Hahn M, Ruch P et al (2006) An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochim Acta 52:675–680 Hardwick LJ, Hahn M, Ruch P et al (2006) An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochim Acta 52:675–680
113.
Zurück zum Zitat Hahn M, Barbieri O, Gallay R et al (2006) A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44:2523–2533 Hahn M, Barbieri O, Gallay R et al (2006) A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44:2523–2533
114.
Zurück zum Zitat Kreczanik P, Venet P, Hijazi A et al (2014) Study of supercapacitor aging and lifetime estimation according to voltage, temperature and RMS current. IEEE Trans Ind Electron 61:4895–4902 Kreczanik P, Venet P, Hijazi A et al (2014) Study of supercapacitor aging and lifetime estimation according to voltage, temperature and RMS current. IEEE Trans Ind Electron 61:4895–4902
115.
Zurück zum Zitat Zhong L, Xi X (2009) Recoverable ultracapacitor electrode. United States Zhong L, Xi X (2009) Recoverable ultracapacitor electrode. United States
116.
Zurück zum Zitat Chaari R, Briat O, Vinassa J-M (2014) Capacitance recovery analysis and modelling of supercapacitors during cycling ageing tests. Energy Convers Manage 82:37–45 Chaari R, Briat O, Vinassa J-M (2014) Capacitance recovery analysis and modelling of supercapacitors during cycling ageing tests. Energy Convers Manage 82:37–45
117.
Zurück zum Zitat Paul K, Christian M, Pascal V et al (2009) Constant power cycling for accelerated ageing of supercapacitors. In: 13th European conference on power electronics and applications, pp 1–10 Paul K, Christian M, Pascal V et al (2009) Constant power cycling for accelerated ageing of supercapacitors. In: 13th European conference on power electronics and applications, pp 1–10
118.
Zurück zum Zitat Hahn M, Koetz R, Gallay R et al (2006) Pressure evolution in propylene carbonate based electrochemical double layer capacitors. Electrochim Acta 52:1709–1712 Hahn M, Koetz R, Gallay R et al (2006) Pressure evolution in propylene carbonate based electrochemical double layer capacitors. Electrochim Acta 52:1709–1712
119.
Zurück zum Zitat Coquery G, Lallemand R, Kauv J et al (2004) First accelerated ageing cycling test on supercapacitors for transportation applications: methodology, first results. In: 1st European symposium on supercapacitors and applications. Belfort Coquery G, Lallemand R, Kauv J et al (2004) First accelerated ageing cycling test on supercapacitors for transportation applications: methodology, first results. In: 1st European symposium on supercapacitors and applications. Belfort
120.
Zurück zum Zitat Diab Y, Venet P, Rojat G (2006) Comparison of the different circuits used for balancing the voltage of supercapacitors: studying performance and lifetime of supercapacitors. In: 2nd European symposium on supercapacitors and applications. Lausanne, Switzerland Diab Y, Venet P, Rojat G (2006) Comparison of the different circuits used for balancing the voltage of supercapacitors: studying performance and lifetime of supercapacitors. In: 2nd European symposium on supercapacitors and applications. Lausanne, Switzerland
121.
Zurück zum Zitat Hwang D-H, Park J-W, Jung J-H (2011) A study on the lifetime comparison for electric double layer capacitors using accelerated degradation test. In: International conference on quality, reliability, risk, maintenance and safety engineering, IEEE, pp 302–307 Hwang D-H, Park J-W, Jung J-H (2011) A study on the lifetime comparison for electric double layer capacitors using accelerated degradation test. In: International conference on quality, reliability, risk, maintenance and safety engineering, IEEE, pp 302–307
122.
Zurück zum Zitat Alcicek G, Gualous H, Venet P et al (2007) Experimental study of temperature effect on ultracapacitor ageing. In: Power electronics and applications, 2007 European conference. aalborg, IEEE Alcicek G, Gualous H, Venet P et al (2007) Experimental study of temperature effect on ultracapacitor ageing. In: Power electronics and applications, 2007 European conference. aalborg, IEEE
123.
Zurück zum Zitat Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587 Al Sakka M, Gualous H, Van Mierlo J et al (2009) Thermal modeling and heat management of supercapacitor modules for vehicle applications. J Power Sources 194:581–587
124.
Zurück zum Zitat Hammar A, Venet P, Lallemand R et al (2010) Study of accelerated aging of supercapacitors for transport applications. IEEE Trans Ind Electron 57:3972–3979 Hammar A, Venet P, Lallemand R et al (2010) Study of accelerated aging of supercapacitors for transport applications. IEEE Trans Ind Electron 57:3972–3979
125.
Zurück zum Zitat Linzen D, Buller S, Karden E et al (2005) Analysis and evaluation of charge-balancing circuits on performace, reliability and lifetime of supercapacitor systems. IEEE Trans Ind Appl 41:1135–1141 Linzen D, Buller S, Karden E et al (2005) Analysis and evaluation of charge-balancing circuits on performace, reliability and lifetime of supercapacitor systems. IEEE Trans Ind Appl 41:1135–1141
126.
Zurück zum Zitat Nakamura M, Nakanishi M, Yamamoto K (1996) Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors. J Power Sources 60:225–231 Nakamura M, Nakanishi M, Yamamoto K (1996) Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors. J Power Sources 60:225–231
127.
Zurück zum Zitat Brouji HE, Briat O, Vinassa JM et al (2009) Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions. Microelectron Reliab 49:1391–1397 Brouji HE, Briat O, Vinassa JM et al (2009) Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions. Microelectron Reliab 49:1391–1397
128.
Zurück zum Zitat Brousse T, Toupin M, Bélanger D (2004) A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J Electrochem Soc 151:A614 Brousse T, Toupin M, Bélanger D (2004) A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J Electrochem Soc 151:A614
129.
Zurück zum Zitat Bittner AM, Zhu M, Yang Y et al (2012) Ageing of electrochemical double layer capacitors. J Power Sources 203:262–273 Bittner AM, Zhu M, Yang Y et al (2012) Ageing of electrochemical double layer capacitors. J Power Sources 203:262–273
130.
Zurück zum Zitat Bohlen O, Kowal J, Dirk Uwe S (2007) Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632 Bohlen O, Kowal J, Dirk Uwe S (2007) Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632
131.
Zurück zum Zitat Ike IS, Sigalas I, Iyuke S et al (2015) An overview of mathematical modeling of electrochemical supercapacitors. J Power Sources 273:264–277 Ike IS, Sigalas I, Iyuke S et al (2015) An overview of mathematical modeling of electrochemical supercapacitors. J Power Sources 273:264–277
132.
Zurück zum Zitat Hahn M, Barbieri O, Campana FP et al (2005) Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl Phys A 82:633–638 Hahn M, Barbieri O, Campana FP et al (2005) Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl Phys A 82:633–638
133.
Zurück zum Zitat Dahn JR, Fong R, Spoon MJ (1990) Suppression of staging in lithium-intercalated carbon by disorder in host. Phys Rev B 42:6422–6432 Dahn JR, Fong R, Spoon MJ (1990) Suppression of staging in lithium-intercalated carbon by disorder in host. Phys Rev B 42:6422–6432
134.
Zurück zum Zitat Pietronero L, Strassler S (1981) Bond-length change as a tool to determine charge-transfer and electron-phonon coupling in graphite-intercalation compounds. Phys Rev Lett 47:593–596 Pietronero L, Strassler S (1981) Bond-length change as a tool to determine charge-transfer and electron-phonon coupling in graphite-intercalation compounds. Phys Rev Lett 47:593–596
135.
Zurück zum Zitat Oren Y, Glatt I, Livnat A et al (1985) The electrical double layer charge and associated dimensional changes by high surface area electrodes as detected by moire deflectometry. J Electroanaytical Chem 187:59–71 Oren Y, Glatt I, Livnat A et al (1985) The electrical double layer charge and associated dimensional changes by high surface area electrodes as detected by moire deflectometry. J Electroanaytical Chem 187:59–71
136.
Zurück zum Zitat Morimoto T, Hiratsuka K, Sanada Y et al (1995) Electric double-layer capacitor using organic electrolyte. J Power Sources 60:239–247 Morimoto T, Hiratsuka K, Sanada Y et al (1995) Electric double-layer capacitor using organic electrolyte. J Power Sources 60:239–247
137.
Zurück zum Zitat Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053 Azais P, Duclaux L, Florian P et al (2007) Causes of supercapacitors ageing in organic electrolyte. J Power Sources 171:1046–1053
138.
Zurück zum Zitat Kurzweil P (2006) Electrochemical and spectroscopic studies on rated capacitance and aging mechanisms of supercapacitors. In: 2nd European symposium on super capacitors and applications (ESSCAP). Lausanne Kurzweil P (2006) Electrochemical and spectroscopic studies on rated capacitance and aging mechanisms of supercapacitors. In: 2nd European symposium on super capacitors and applications (ESSCAP). Lausanne
139.
Zurück zum Zitat Kurzweil P, Fischle HJ (2003) Double-layer capacitor development and manufacture by HYDRA/AEG. In: Proceedings of 13th international seminar on double-layer capacitors, Deerfield Beach, pp 1–11 Kurzweil P, Fischle HJ (2003) Double-layer capacitor development and manufacture by HYDRA/AEG. In: Proceedings of 13th international seminar on double-layer capacitors, Deerfield Beach, pp 1–11
140.
Zurück zum Zitat Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567 Kurzweil P, Chwistek M (2008) Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 176:555–567
141.
Zurück zum Zitat Aurbach D, Zaban A (1994) Impedance spectroscopy of nonactive metal electrodes at low potentials in propylene carbonate solutions. J Electrochem Soc 141:1808–1819 Aurbach D, Zaban A (1994) Impedance spectroscopy of nonactive metal electrodes at low potentials in propylene carbonate solutions. J Electrochem Soc 141:1808–1819
142.
Zurück zum Zitat Zhu M, Weber CJ, Yang Y et al (2008) Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 46:1829–1840 Zhu M, Weber CJ, Yang Y et al (2008) Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 46:1829–1840
143.
Zurück zum Zitat Cericola D, Kötz R, Wokaun A (2011) Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes. J Power Sources 196:3114–3118 Cericola D, Kötz R, Wokaun A (2011) Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes. J Power Sources 196:3114–3118
144.
Zurück zum Zitat Kötz R, Hahn M, Ruch P et al (2008) Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochem Commun 10:359–362 Kötz R, Hahn M, Ruch P et al (2008) Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochem Commun 10:359–362
145.
Zurück zum Zitat Dixon JW, Ortuzar ME (2002) Ultracapacitors+ DC-DC converters in regenerative braking system. In: IEEE Aerospace and electronic systems magazine, IEEE, pp 16–21 Dixon JW, Ortuzar ME (2002) Ultracapacitors+ DC-DC converters in regenerative braking system. In: IEEE Aerospace and electronic systems magazine, IEEE, pp 16–21
146.
Zurück zum Zitat Niu J, Conway BE, Pell WG (2004) Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. J Power Sources 135:332–343 Niu J, Conway BE, Pell WG (2004) Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. J Power Sources 135:332–343
147.
Zurück zum Zitat Conway BE, Pell WG, Liu T-C (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59 Conway BE, Pell WG, Liu T-C (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59
148.
Zurück zum Zitat Diab Y, Venet P, Gualous H et al (2009) Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Trans Power Electron 24:510–517 Diab Y, Venet P, Gualous H et al (2009) Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Trans Power Electron 24:510–517
149.
Zurück zum Zitat Kowal J, Avaroglu E, Chamekh F et al (2011) Detailed analysis of the self-discharge of supercapacitors. J Power Sources 196:573–579 Kowal J, Avaroglu E, Chamekh F et al (2011) Detailed analysis of the self-discharge of supercapacitors. J Power Sources 196:573–579
150.
Zurück zum Zitat Ayadi M, Eddahech A, Briat O et al (2013) Voltage and temperature impacts on leakage current in calendar ageing of supercapacitors. In: 4th international conference on power engineering Istanbul, Turkey, pp 1466–1470 Ayadi M, Eddahech A, Briat O et al (2013) Voltage and temperature impacts on leakage current in calendar ageing of supercapacitors. In: 4th international conference on power engineering Istanbul, Turkey, pp 1466–1470
151.
Zurück zum Zitat Yao YY, Zhang DL, Xu DG (2006) A study of supercapacitor parameters and characteristics. In: International conference on power systems technology Yao YY, Zhang DL, Xu DG (2006) A study of supercapacitor parameters and characteristics. In: International conference on power systems technology
152.
Zurück zum Zitat Kaus M, Kowal J, Sauer DU (2010) Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim Acta 55:7516–7523 Kaus M, Kowal J, Sauer DU (2010) Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim Acta 55:7516–7523
153.
Zurück zum Zitat Black J, Andreas HA (2009) Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim Acta 54:3568–3574 Black J, Andreas HA (2009) Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim Acta 54:3568–3574
154.
Zurück zum Zitat Zhang Y, Yang H (2011) Modeling and characterization of supercapacitors for wireless sensor network applications. J Power Sources 196:4128–4135 Zhang Y, Yang H (2011) Modeling and characterization of supercapacitors for wireless sensor network applications. J Power Sources 196:4128–4135
155.
Zurück zum Zitat Zhang Q, Rong J, Ma D et al (2011) The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ Sci 4:2152–2159 Zhang Q, Rong J, Ma D et al (2011) The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ Sci 4:2152–2159
156.
Zurück zum Zitat Ricketts BW, Ton-That C (2000) Self-discharge of carbon-based supercapacitors with organic electrolytes. J Power Sources 89:64–69 Ricketts BW, Ton-That C (2000) Self-discharge of carbon-based supercapacitors with organic electrolytes. J Power Sources 89:64–69
Metadaten
Titel
Influence of Temperature on Supercapacitor Performance
verfasst von
Guoping Xiong
Arpan Kundu
Timothy S. Fisher
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-20242-6_4