Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 16/2020

20.07.2020

Influence of the growth temperature on the spectral dependence of the optical functions associated with thin silicon films grown by ultra-high-vacuum evaporation on optical quality fused quartz substrates

verfasst von: Saeed Moghaddam, Farida Orapunt, Mario Noël, Joanne C. Zwinkels, Jean-Marc Baribeau, David J. Lockwood, Stephen K. O’Leary

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 16/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Following up on some recent work that has been presented (Orapunt et al., J Appl Phys 119:065702-1-12, 2016), we report on the optical properties associated with a unique form of thin-film silicon that has been deposited onto optical quality fused quartz substrates through ultra-high-vacuum evaporation. For the purposes of this particular analysis, we focus on how the growth temperature influences the spectral dependence of the optical functions associated with these thin silicon films, for growth temperatures ranging from 98 to 572 °C. Through measurements of the specular reflectance spectrum at near normal incidence and the regular transmittance spectrum at normal incidence, we determine the spectral dependence of the refractive index, the extinction coefficient, the real and imaginary parts of the dielectric function, and the optical absorption coefficient for the 11 thin silicon films considered in this analysis. We find that generally the refractive index increases in response to increases in the growth temperature. The optical absorption spectral dependence is also observed to exhibit a fundamental transition in its functional behavior accompanying increases in the growth temperature. Some details, related to recently developed methods employed for the determination of the optical functions from measurements of the reflectance and transmittance spectra, are provided as a complement to this analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
By “lattice” we are referring to the manner in which the atoms are distributed throughout the material.
 
2
The suitability of these thin silicon films for photovoltaic device applications has yet to be fully probed. While the electron spin resonance work of Akbari-Sharbaf et al. [38] and the carrier dynamic work of Titova et al. [39] has shown that similarly prepared thin films of silicon are promising for photovoltaic device applications, light soaking experiments, and other photovoltaic-specific analyzes, have yet to be pursued. These will have to be performed in the future if the photovoltaic potential of this material is to be realized.
 
3
The apparently anomalous behavior observed in the reflectance spectra, where the measured reflectance of the thin silicon film coating is less than that associated with the bare optical quality fused quartz substrate, can be explained if the optical thickness of the thin-films at these particular wavelengths is such that destructive interference occurs. In this situation, the thin-film behaves like an anti-reflection coating, where the reflectance is diminished and the throughput (transmittance) is increased compared with the bare optical quality fused quartz substrate.
 
4
There is evidence to suggest that there are inhomogeneities that occur in the optical properties as one goes deeper into a given thin-film, these inhomogeneities reflecting the structural inhomogeneities that are present. In effect, a given thin-film may be thought of as being comprised of a stack of thin-film layers, each layer within such a stack having its own optical properties. These differences become magnified the thicker the thin-film, the thin-films grown at 98 \(^{\circ }\)C exhibiting large differences in their thicknesses when contrasted with those grown at the other growth temperatures; recall Table 1.
 
5
In contrast, for the case of PD-a-Si, O’Leary [55] demonstrated that there is a fundamental discontinuity in the optical absorption spectrum as the disorderless limit is approached.
 
Literatur
1.
Zurück zum Zitat A. Terakawa, Sol. Energy Mater. Sol. Cells 119, 204–208 (2013) A. Terakawa, Sol. Energy Mater. Sol. Cells 119, 204–208 (2013)
2.
Zurück zum Zitat H.W. van Zeijl, ECS Trans. 61, 191–206 (2014) H.W. van Zeijl, ECS Trans. 61, 191–206 (2014)
3.
Zurück zum Zitat S. Wagner, MRS Bull. 43, 617–622 (2018) S. Wagner, MRS Bull. 43, 617–622 (2018)
4.
Zurück zum Zitat M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632–2641 (1970) M.H. Brodsky, R.S. Title, K. Weiser, G.D. Pettit, Phys. Rev. B 1, 2632–2641 (1970)
5.
Zurück zum Zitat W.E. Spear, P.G. Le Comber, Solid State Commun. 17, 1193–1196 (1975) W.E. Spear, P.G. Le Comber, Solid State Commun. 17, 1193–1196 (1975)
6.
Zurück zum Zitat M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556–3571 (1977) M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556–3571 (1977)
7.
Zurück zum Zitat E.C. Freeman, W. Paul, Phys. Rev. B 20, 716–728 (1979) E.C. Freeman, W. Paul, Phys. Rev. B 20, 716–728 (1979)
8.
Zurück zum Zitat J. Kakalios, R.A. Street, W.B. Jackson, Phys. Rev. Lett. 59, 1037–1040 (1987) J. Kakalios, R.A. Street, W.B. Jackson, Phys. Rev. Lett. 59, 1037–1040 (1987)
9.
Zurück zum Zitat R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991) R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)
10.
Zurück zum Zitat C. Weber, J.R. Abelson, IEEE Trans. Electron Devices 45, 447–452 (1998) C. Weber, J.R. Abelson, IEEE Trans. Electron Devices 45, 447–452 (1998)
11.
Zurück zum Zitat R.A. Street (ed.), Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000) R.A. Street (ed.), Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000)
12.
Zurück zum Zitat J. Deng, C.R. Wronski, J. Appl. Phys. 98, 024509-1-10 (2005) J. Deng, C.R. Wronski, J. Appl. Phys. 98, 024509-1-10 (2005)
13.
Zurück zum Zitat C. Longeaud, F. Ventosinos, J.A. Schmidt, J. Appl. Phys. 112, 023709-1-10 (2012) C. Longeaud, F. Ventosinos, J.A. Schmidt, J. Appl. Phys. 112, 023709-1-10 (2012)
14.
Zurück zum Zitat R. Grigorovici, A. Vancu, Thin Solid Films 2, 105–110 (1968) R. Grigorovici, A. Vancu, Thin Solid Films 2, 105–110 (1968)
15.
Zurück zum Zitat D. Beaglehole, M. Zavetova, J. Non-Cryst. Solids 4, 272–278 (1970) D. Beaglehole, M. Zavetova, J. Non-Cryst. Solids 4, 272–278 (1970)
16.
Zurück zum Zitat J.E. Fischer, T.M. Donovan, J. Non-Cryst. Solids 8–10, 202–208 (1972) J.E. Fischer, T.M. Donovan, J. Non-Cryst. Solids 8–10, 202–208 (1972)
17.
Zurück zum Zitat S.K. Bahl, S.M. Bhagat, J. Non-Cryst. Solids 17, 409–427 (1975) S.K. Bahl, S.M. Bhagat, J. Non-Cryst. Solids 17, 409–427 (1975)
18.
Zurück zum Zitat G.K.M. Thutupalli, S.G. Tomlin, J. Phys. C 10, 467–477 (1977) G.K.M. Thutupalli, S.G. Tomlin, J. Phys. C 10, 467–477 (1977)
19.
Zurück zum Zitat M.H. Brodsky, R.S. Title, Phys. Rev. Lett. 23, 581–585 (1969) M.H. Brodsky, R.S. Title, Phys. Rev. Lett. 23, 581–585 (1969)
20.
Zurück zum Zitat D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671–673 (1976) D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671–673 (1976)
21.
Zurück zum Zitat P.G. Le Comber, W.E. Spear, A. Ghaith, Electron. Lett. 15, 179–181 (1979) P.G. Le Comber, W.E. Spear, A. Ghaith, Electron. Lett. 15, 179–181 (1979)
22.
Zurück zum Zitat A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, A.J. Hughes, Appl. Phys. 24, 357–362 (1981) A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, A.J. Hughes, Appl. Phys. 24, 357–362 (1981)
23.
Zurück zum Zitat C.C. Tsai, J.C. Knights, R.A. Lujan, B. Wacker, B.L. Stafford, M.J. Thompson, J. Non-Cryst. Solids 59 & 60, 731–734 (1983) C.C. Tsai, J.C. Knights, R.A. Lujan, B. Wacker, B.L. Stafford, M.J. Thompson, J. Non-Cryst. Solids 59 & 60, 731–734 (1983)
24.
Zurück zum Zitat C.R. Wronski, Sol. Energy Mater. Sol. Cells 41/42, 427–439 (1996) C.R. Wronski, Sol. Energy Mater. Sol. Cells 41/42, 427–439 (1996)
25.
Zurück zum Zitat Z. Remes̆, M. Vanĕc̆ek, P. Torres, U. Kroll, A.H. Mahan, R.S. Crandall, J. Non-Cryst. Solids 227—-230, 876–879 (1998) Z. Remes̆, M. Vanĕc̆ek, P. Torres, U. Kroll, A.H. Mahan, R.S. Crandall, J. Non-Cryst. Solids 227—-230, 876–879 (1998)
26.
Zurück zum Zitat F. Gaspari, L.S. Sidhu, S.K. O’Leary, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 420, 375–380 (1996) F. Gaspari, L.S. Sidhu, S.K. O’Leary, S. Zukotynski, Mater. Res. Soc. Symp. Proc. 420, 375–380 (1996)
27.
Zurück zum Zitat D.A. Papaconstantopoulos, E.N. Economou, Phys. Rev. B 24, 7233–7246 (1981) D.A. Papaconstantopoulos, E.N. Economou, Phys. Rev. B 24, 7233–7246 (1981)
28.
Zurück zum Zitat D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292–294 (1977) D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292–294 (1977)
29.
Zurück zum Zitat R. Biswas, B.C. Pan, Appl. Phys. Lett. 72, 371–373 (1998) R. Biswas, B.C. Pan, Appl. Phys. Lett. 72, 371–373 (1998)
30.
Zurück zum Zitat R. Biswas, Y.-P. Li, Phys. Rev. Lett. 82, 2512–2515 (1999) R. Biswas, Y.-P. Li, Phys. Rev. Lett. 82, 2512–2515 (1999)
31.
Zurück zum Zitat B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429–434 (2001) B.J. Fogal, S.K. O’Leary, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, Solid State Commun. 120, 429–434 (2001)
32.
Zurück zum Zitat S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57–63 (2001) S.K. O’Leary, B.J. Fogal, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, J. Non-Cryst. Solids 290, 57–63 (2001)
33.
Zurück zum Zitat D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271–275 (2002) D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, B.J. Fogal, S.K. O’Leary, Solid State Commun. 122, 271–275 (2002)
34.
Zurück zum Zitat J.-M. Baribeau, X. Wu, D.J. Lockwood, L. Tay, G.I. Sproule, J. Vac. Sci. Technol. B 22, 1479–1483 (2004) J.-M. Baribeau, X. Wu, D.J. Lockwood, L. Tay, G.I. Sproule, J. Vac. Sci. Technol. B 22, 1479–1483 (2004)
35.
Zurück zum Zitat L. Tay, D.J. Lockwood, J.-M. Baribeau, X. Wu, G.I. Sproule, J. Vac. Sci. Technol. A 22, 943–947 (2004) L. Tay, D.J. Lockwood, J.-M. Baribeau, X. Wu, G.I. Sproule, J. Vac. Sci. Technol. A 22, 943–947 (2004)
36.
Zurück zum Zitat L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920-1-3 (2006) L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, F. Orapunt, S.K. O’Leary, Appl. Phys. Lett. 88, 121920-1-3 (2006)
37.
Zurück zum Zitat F. Orapunt, L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, J. Appl. Phys. 119, 065702-1-12 (2016) F. Orapunt, L.-L. Tay, D.J. Lockwood, J.-M. Baribeau, M. Noël, J.C. Zwinkels, S.K. O’Leary, J. Appl. Phys. 119, 065702-1-12 (2016)
38.
Zurück zum Zitat A. Akbari-Sharbaf, J.-M. Baribeau, X. Wu, D.J. Lockwood, G. Fanchini, Thin Solid Films 527, 38–44 (2013) A. Akbari-Sharbaf, J.-M. Baribeau, X. Wu, D.J. Lockwood, G. Fanchini, Thin Solid Films 527, 38–44 (2013)
39.
Zurück zum Zitat L.V. Titova, T.L. Cocker, S. Xu, J.-M. Baribeau, X. Wu, D.J. Lockwood, F.A. Hegmann, Semicond. Sci. Technol. 31, 105017-1-8 (2016) L.V. Titova, T.L. Cocker, S. Xu, J.-M. Baribeau, X. Wu, D.J. Lockwood, F.A. Hegmann, Semicond. Sci. Technol. 31, 105017-1-8 (2016)
40.
Zurück zum Zitat K.J. Schmidt, Y. Lin, M. Beaudoin, G. Xia, S.K. O’Leary, G. Yue, B. Yan, Can. J. Phys. 92, 857–861 (2014) K.J. Schmidt, Y. Lin, M. Beaudoin, G. Xia, S.K. O’Leary, G. Yue, B. Yan, Can. J. Phys. 92, 857–861 (2014)
41.
Zurück zum Zitat R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C.R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143–180 (2003) R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C.R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143–180 (2003)
42.
Zurück zum Zitat G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Sol. Cells 2, 227–243 (1980) G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks, Sol. Cells 2, 227–243 (1980)
43.
Zurück zum Zitat O.S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955) O.S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955)
44.
Zurück zum Zitat R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D 5, 852–863 (1972) R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D 5, 852–863 (1972)
45.
Zurück zum Zitat S.G. Tomlin, J. Phys. D 1, 1667–1671 (1968) S.G. Tomlin, J. Phys. D 1, 1667–1671 (1968)
46.
Zurück zum Zitat E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 749–763 E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 749–763
47.
Zurück zum Zitat C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985–987 (1983) C.B. Roxlo, B. Abeles, C.R. Wronski, G.D. Cody, T. Tiedje, Solid State Commun. 47, 985–987 (1983)
48.
Zurück zum Zitat M.M. El-Nahass, H.S. Soliman, N.El. Kadry, A.Y. Morsy, S. Yaghmour, J. Mater. Sci. Lett. 7, 1050–1053 (1988) M.M. El-Nahass, H.S. Soliman, N.El. Kadry, A.Y. Morsy, S. Yaghmour, J. Mater. Sci. Lett. 7, 1050–1053 (1988)
49.
Zurück zum Zitat R. Sridhar, R. Venkattasubbiah, J. Majhi, R. Ramachandran, J. Non-Cryst. Solids 119, 331–341 (1990) R. Sridhar, R. Venkattasubbiah, J. Majhi, R. Ramachandran, J. Non-Cryst. Solids 119, 331–341 (1990)
50.
Zurück zum Zitat J. Müllerová, L. Prus̆áková, M. Netrvalová, V. Vavrun̆ková, P. Šutta, Appl. Surf. Sci. 256, 5667–5671 (2010) J. Müllerová, L. Prus̆áková, M. Netrvalová, V. Vavrun̆ková, P. Šutta, Appl. Surf. Sci. 256, 5667–5671 (2010)
51.
Zurück zum Zitat A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018–7026 (1986) A.R. Forouhi, I. Bloomer, Phys. Rev. B 34, 7018–7026 (1986)
52.
Zurück zum Zitat R.H. Klazes, M.H.L.M. van den Broek, J. Bezemer, S. Radelaar, Philos. Mag. B 45, 377–383 (1982) R.H. Klazes, M.H.L.M. van den Broek, J. Bezemer, S. Radelaar, Philos. Mag. B 45, 377–383 (1982)
53.
Zurück zum Zitat S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, Chichester, 2005) S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, Chichester, 2005)
54.
Zurück zum Zitat G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981) G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981)
55.
Zurück zum Zitat S.K. O’Leary, Appl. Phys. Lett. 72, 1332–1334 (1998) S.K. O’Leary, Appl. Phys. Lett. 72, 1332–1334 (1998)
Metadaten
Titel
Influence of the growth temperature on the spectral dependence of the optical functions associated with thin silicon films grown by ultra-high-vacuum evaporation on optical quality fused quartz substrates
verfasst von
Saeed Moghaddam
Farida Orapunt
Mario Noël
Joanne C. Zwinkels
Jean-Marc Baribeau
David J. Lockwood
Stephen K. O’Leary
Publikationsdatum
20.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 16/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03870-1

Weitere Artikel der Ausgabe 16/2020

Journal of Materials Science: Materials in Electronics 16/2020 Zur Ausgabe

Neuer Inhalt