Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2019

12.02.2019

Influence of Thermal Treatment on the Microstructure, Mechanical Properties, and Corrosion Resistance of Newly Developed Ti20Nb13Zr Biomedical Alloy in a Simulated Body Environment

verfasst von: M. A. Hussein, M. Azeem, A. Madhan Kumar, N. Al-Aqeeli, N. K. Ankah, A. A. Sorour

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of thermal treatments on the microstructure, hardness, and electrochemical performance in a simulated body fluid were studied for the newly developed (β + α) Ti20Nb13Zr alloy (TNZ) for biomedical applications. The alloy was heat-treated for 1 h at 900 °C and then cooled at different cooling rates. Then, the solution-treated samples were aged at 400, 500, or 600 °C for 5 h. The phase evolution and microstructure of the treated alloy were examined using XRD and SEM/EDX analysis. The mechanical properties were assessed using microindentation. The surface protection performance against corrosion was assessed by potentiodynamic polarization and electrochemical impedance spectroscopic analysis. The obtained results showed that the wide range of microstructure with varied volume fraction and morphology of β and α were obtained with different heat treatment conditions. The different phases’ sizes and distributions influenced the microstructure obtained during the heat treatment, thereby affecting the mechanical properties. The corrosion performance significantly altered with variations in the microstructure of the TNZ alloy as a result of the different thermal treatments. The heat treatment of TNZ conferred enhanced combination of mechanical and corrosion protection compared to that of the commercial Ti6Al4V alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Niinomi and D.D. Sc, Metallic Biomaterials, J. Artif. Organs, 2008, 11(3), p 105–110CrossRef M. Niinomi and D.D. Sc, Metallic Biomaterials, J. Artif. Organs, 2008, 11(3), p 105–110CrossRef
2.
Zurück zum Zitat M. Niinomi, Recent Progress in Research and Development of Metallic Structural Biomaterials with Mainly Focusing on Mechanical Biocompatibility, Mater. Trans., 2018, 59(1), p 11–13CrossRef M. Niinomi, Recent Progress in Research and Development of Metallic Structural Biomaterials with Mainly Focusing on Mechanical Biocompatibility, Mater. Trans., 2018, 59(1), p 11–13CrossRef
3.
Zurück zum Zitat T. Homma, A. Arafah, D. Haley, M. Nakai, M. Niinomi, and M.P. Moody, Effect of Alloying Elements on Microstructural Evolution in Oxygen Content Controlled Ti-29Nb-13Ta-4.6 Zr (wt.%) Alloys for Biomedical Applications During Aging, J. Mater. Sci. Eng. A, 2018, 709, p 312–321CrossRef T. Homma, A. Arafah, D. Haley, M. Nakai, M. Niinomi, and M.P. Moody, Effect of Alloying Elements on Microstructural Evolution in Oxygen Content Controlled Ti-29Nb-13Ta-4.6 Zr (wt.%) Alloys for Biomedical Applications During Aging, J. Mater. Sci. Eng. A, 2018, 709, p 312–321CrossRef
4.
Zurück zum Zitat K. Niespodziana, K. Jurczk, and M. Jurczk, The Synthesis of Titanium Alloys for Biomedical Applications, Rev. Adv. Mater. Sci., 2008, 18, p 236–240 K. Niespodziana, K. Jurczk, and M. Jurczk, The Synthesis of Titanium Alloys for Biomedical Applications, Rev. Adv. Mater. Sci., 2008, 18, p 236–240
5.
Zurück zum Zitat K. Wang, The Use of Titanium for Medical Applications in the USA, J. Mater. Sci. Eng. A, 1996, 213(1–2), p 134–137CrossRef K. Wang, The Use of Titanium for Medical Applications in the USA, J. Mater. Sci. Eng. A, 1996, 213(1–2), p 134–137CrossRef
6.
Zurück zum Zitat K. Otsuka and X. Ren, Recent Developments in the Research of Shape Memory Alloys, Intermetallics, 1999, 7(5), p 511–528CrossRef K. Otsuka and X. Ren, Recent Developments in the Research of Shape Memory Alloys, Intermetallics, 1999, 7(5), p 511–528CrossRef
7.
Zurück zum Zitat X. Xi, T. Yu, W. Ding, and J. Xu, Grinding of Ti2AlNb Intermetallics Using Silicon Carbide and Alumina Abrasive Wheels: Tool Surface Topology Effect on Grinding Force and Ground Surface Quality, Precis. Eng., 2018, 53, p 134–145CrossRef X. Xi, T. Yu, W. Ding, and J. Xu, Grinding of Ti2AlNb Intermetallics Using Silicon Carbide and Alumina Abrasive Wheels: Tool Surface Topology Effect on Grinding Force and Ground Surface Quality, Precis. Eng., 2018, 53, p 134–145CrossRef
8.
Zurück zum Zitat C. Trepanier, R. Venugopalan, and A.R. Pelton, Corrosion Resistance and Biocompatibility of Passivated NiTi, Shape Memory Implants, L. Yahia, Ed., Springer, Berlin, Heidelberg, 2000, p 35–45CrossRef C. Trepanier, R. Venugopalan, and A.R. Pelton, Corrosion Resistance and Biocompatibility of Passivated NiTi, Shape Memory Implants, L. Yahia, Ed., Springer, Berlin, Heidelberg, 2000, p 35–45CrossRef
9.
Zurück zum Zitat S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 357–362CrossRef S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 357–362CrossRef
10.
Zurück zum Zitat A. Biesiekierski, J. Wang, M.A.H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669CrossRef A. Biesiekierski, J. Wang, M.A.H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669CrossRef
11.
Zurück zum Zitat E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme, Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25(26), p 5705–5713CrossRef E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme, Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25(26), p 5705–5713CrossRef
12.
Zurück zum Zitat A.L.R. Ribeiro, R.C. Junior, F.F. Cardoso, R.B. Fernandes Filho, and L.G. Vaz, Mechanical, Physical, and Chemical Characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr Casting Alloys, J. Mater. Sci. Mater. Med., 2009, 20(8), p 1629–1636CrossRef A.L.R. Ribeiro, R.C. Junior, F.F. Cardoso, R.B. Fernandes Filho, and L.G. Vaz, Mechanical, Physical, and Chemical Characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr Casting Alloys, J. Mater. Sci. Mater. Med., 2009, 20(8), p 1629–1636CrossRef
13.
Zurück zum Zitat R.I. Asri, W.S. Harun, M. Samykano, N.A. Lah, S.A. Ghani, F. Tarlochan, and M.R. Raza, Corrosion and Surface Modification on Biocompatible Metals: A Review, Mater. Sci. Eng. C, 2017, 77(1), p 1261–1274CrossRef R.I. Asri, W.S. Harun, M. Samykano, N.A. Lah, S.A. Ghani, F. Tarlochan, and M.R. Raza, Corrosion and Surface Modification on Biocompatible Metals: A Review, Mater. Sci. Eng. C, 2017, 77(1), p 1261–1274CrossRef
14.
Zurück zum Zitat M.A. Hussein, A.S. Mohammed, and N. Al-Aqeeli, Wear Characteristics of Metallic Biomaterials: A Review, Materials, 2015, 8(5), p 2749–2768CrossRef M.A. Hussein, A.S. Mohammed, and N. Al-Aqeeli, Wear Characteristics of Metallic Biomaterials: A Review, Materials, 2015, 8(5), p 2749–2768CrossRef
15.
Zurück zum Zitat Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab. J. Sci. Eng., 2017, 42(11), p 4493–4512CrossRef Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab. J. Sci. Eng., 2017, 42(11), p 4493–4512CrossRef
16.
Zurück zum Zitat K. Kyzioł, Ł. Kaczmarek, G. Brzezinka, and A. Kyzioł, Structure, Characterization and Cytotoxicity Study on Plasma Surface Modified Ti-6Al-4V and γ-TiAl Alloys, Chem. Eng. J., 2014, 240, p 516–526CrossRef K. Kyzioł, Ł. Kaczmarek, G. Brzezinka, and A. Kyzioł, Structure, Characterization and Cytotoxicity Study on Plasma Surface Modified Ti-6Al-4V and γ-TiAl Alloys, Chem. Eng. J., 2014, 240, p 516–526CrossRef
17.
Zurück zum Zitat M. Januś, K. Kyzioł, S. Kluska, J. Konefał-Góral, A. Małek, and S. Jonas, Plasma Assisted Chemical Vapour Deposition—Technological Design of Functional Coatings, Arch. Metall. Mater., 2015, 60(2), p 909–914CrossRef M. Januś, K. Kyzioł, S. Kluska, J. Konefał-Góral, A. Małek, and S. Jonas, Plasma Assisted Chemical Vapour Deposition—Technological Design of Functional Coatings, Arch. Metall. Mater., 2015, 60(2), p 909–914CrossRef
18.
Zurück zum Zitat M.A. Hussein, A.M. Kumar, B.S. Yilbas, and N. Al-Aqeeli, Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid, J. Mater. Eng. Perform., 2017, 26(11), p 5553–5562CrossRef M.A. Hussein, A.M. Kumar, B.S. Yilbas, and N. Al-Aqeeli, Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid, J. Mater. Eng. Perform., 2017, 26(11), p 5553–5562CrossRef
19.
Zurück zum Zitat M.A. Hussein, B. Yilbas, A.M. Kumar, R. Drew, and N. Al-Aqeeli, Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications, J. Mater. Eng. Perform., 2018, 27(9), p 4655–4664CrossRef M.A. Hussein, B. Yilbas, A.M. Kumar, R. Drew, and N. Al-Aqeeli, Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications, J. Mater. Eng. Perform., 2018, 27(9), p 4655–4664CrossRef
20.
Zurück zum Zitat A.M. Kumar, M.A. Hussein, A.Y. Adesina, S. Ramakrishna, and N. Al-Aqeeli, Influence of Surface Treatment on PEDOT Coatings: Surface and Electrochemical Corrosion Aspects of Newly Developed Ti Alloy, RSC Adv., 2018, 34, p 19181–19195CrossRef A.M. Kumar, M.A. Hussein, A.Y. Adesina, S. Ramakrishna, and N. Al-Aqeeli, Influence of Surface Treatment on PEDOT Coatings: Surface and Electrochemical Corrosion Aspects of Newly Developed Ti Alloy, RSC Adv., 2018, 34, p 19181–19195CrossRef
21.
Zurück zum Zitat M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Fabrication of Nano-grained Ti-Nb-Zr Biomaterials Using Spark Plasma Sintering, Mater. Des., 2015, 87, p 693–700CrossRef M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Fabrication of Nano-grained Ti-Nb-Zr Biomaterials Using Spark Plasma Sintering, Mater. Des., 2015, 87, p 693–700CrossRef
22.
Zurück zum Zitat M.A. Hussein, C. Suryanarayana, M.K. Arumugam, and N. Al-Aqeeli, Effect of Sintering Parameters on Microstructure, Mechanical Properties and Electrochemical Behavior of Nb-Zr Alloy for Biomedical Applications, Mater. Des., 2015, 83, p 344–351CrossRef M.A. Hussein, C. Suryanarayana, M.K. Arumugam, and N. Al-Aqeeli, Effect of Sintering Parameters on Microstructure, Mechanical Properties and Electrochemical Behavior of Nb-Zr Alloy for Biomedical Applications, Mater. Des., 2015, 83, p 344–351CrossRef
23.
Zurück zum Zitat B. Zhao, T. Yu, W. Ding, L. Zhang, H. Su, and Z. Chen, Effect of Micropores on the Microstructure and Mechanical Properties of Porous Cu-Sn-Ti Composites, Mater. Sci. Eng. A, 2018, 730, p 345–354CrossRef B. Zhao, T. Yu, W. Ding, L. Zhang, H. Su, and Z. Chen, Effect of Micropores on the Microstructure and Mechanical Properties of Porous Cu-Sn-Ti Composites, Mater. Sci. Eng. A, 2018, 730, p 345–354CrossRef
24.
Zurück zum Zitat Z.H. Biao, Y.U. Tianyu, D.I. Wenfeng, and L.I. Xianying, Effects of Pore Structure and Distribution on Strength of Porous Cu-Sn-Ti Alumina Composites, Chin. J. Aeronaut., 2017, 30(6), p 2004–2015CrossRef Z.H. Biao, Y.U. Tianyu, D.I. Wenfeng, and L.I. Xianying, Effects of Pore Structure and Distribution on Strength of Porous Cu-Sn-Ti Alumina Composites, Chin. J. Aeronaut., 2017, 30(6), p 2004–2015CrossRef
25.
Zurück zum Zitat F. Prima, J. Debuigne, M. Boliveau, and D. Ansel, Control of Omega Volume Fraction Precipitated in a Beta Titanium Alloy: Development of an Experimental Method, J. Mater. Sci. Lett., 2000, 19(24), p 2219–2221CrossRef F. Prima, J. Debuigne, M. Boliveau, and D. Ansel, Control of Omega Volume Fraction Precipitated in a Beta Titanium Alloy: Development of an Experimental Method, J. Mater. Sci. Lett., 2000, 19(24), p 2219–2221CrossRef
26.
Zurück zum Zitat R.R. Boyer, H.J. Rack, and V. Ventatesh, The Influence of Thermomechanical Processing on the Smooth Fatigue Properties of Ti-15V-3Cr-3Al-3Sn, J. Mater. Sci. Eng. A, 1998, 243(1–2), p 97–102CrossRef R.R. Boyer, H.J. Rack, and V. Ventatesh, The Influence of Thermomechanical Processing on the Smooth Fatigue Properties of Ti-15V-3Cr-3Al-3Sn, J. Mater. Sci. Eng. A, 1998, 243(1–2), p 97–102CrossRef
27.
Zurück zum Zitat N. El Bagoury and K.M. Ibrahim, Microstructure, Phase Transformations and Mechanical Properties of Solution Treated Bi-Modal β Titanium Alloy, Int. J. Eng. Sci. Res. Technol., 2016, 5(5), p 517–525CrossRef N. El Bagoury and K.M. Ibrahim, Microstructure, Phase Transformations and Mechanical Properties of Solution Treated Bi-Modal β Titanium Alloy, Int. J. Eng. Sci. Res. Technol., 2016, 5(5), p 517–525CrossRef
28.
Zurück zum Zitat S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 357–362CrossRef S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 357–362CrossRef
29.
Zurück zum Zitat D. Kuroda, M. Niinomi, T. Akahori, H. Fukui, A. Suzuki, T. Hasegawa et al., Structural Biomaterials for the 21st Century, TMS, The Minerals Metals and Materials Society, Pittsburgh, 2001 D. Kuroda, M. Niinomi, T. Akahori, H. Fukui, A. Suzuki, T. Hasegawa et al., Structural Biomaterials for the 21st Century, TMS, The Minerals Metals and Materials Society, Pittsburgh, 2001
30.
Zurück zum Zitat T. Ahmed, M. Long, C. Silverstri Ruiz, and H.J. Rack, A New Low Modulus, Biocompatible Titanium Alloy, Titanium 95: Science and Technology, P.J. Bania, W.J. Evans, and H.M. Flower, Ed., IoM, London, 1995, p 1760–1767 T. Ahmed, M. Long, C. Silverstri Ruiz, and H.J. Rack, A New Low Modulus, Biocompatible Titanium Alloy, Titanium 95: Science and Technology, P.J. Bania, W.J. Evans, and H.M. Flower, Ed., IoM, London, 1995, p 1760–1767
31.
Zurück zum Zitat T. Akahori, M. Niinomi, H. Fukui, A. Suzuki, Y. Hattori, S. Niwa et al., Titanium 2003 Science and Technology, Wiley VCH Verlag, GMBH and Co. KGaA, Weinhem, 2003 T. Akahori, M. Niinomi, H. Fukui, A. Suzuki, Y. Hattori, S. Niwa et al., Titanium 2003 Science and Technology, Wiley VCH Verlag, GMBH and Co. KGaA, Weinhem, 2003
32.
Zurück zum Zitat H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), J. Mater. Sci. Eng. A, 2017, 685, p 417–428CrossRef H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), J. Mater. Sci. Eng. A, 2017, 685, p 417–428CrossRef
33.
Zurück zum Zitat Y. Okazaki, A New Ti-15Zr-4Nb-Ta Alloy for Medical Applications, Curr. Opin. Solid State Mater. Sci., 2001, 5(1), p 45–53CrossRef Y. Okazaki, A New Ti-15Zr-4Nb-Ta Alloy for Medical Applications, Curr. Opin. Solid State Mater. Sci., 2001, 5(1), p 45–53CrossRef
34.
Zurück zum Zitat M.A. Hussein, M. Kumar, R. Drew, and N. Al-Aqeeli, Electrochemical Corrosion and In vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid, Materials, 2017, 11(1), p 26CrossRef M.A. Hussein, M. Kumar, R. Drew, and N. Al-Aqeeli, Electrochemical Corrosion and In vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid, Materials, 2017, 11(1), p 26CrossRef
35.
Zurück zum Zitat M.A. Hussein and N. Al-Aqeeli, Titanium Alloys for Biomedical Applications and Fabrication Methods Thereof. US, Patent number, 2017, 9828655 M.A. Hussein and N. Al-Aqeeli, Titanium Alloys for Biomedical Applications and Fabrication Methods Thereof. US, Patent number, 2017, 9828655
36.
Zurück zum Zitat Z. Guo, S. Malinov, and W. Sha, Modelling Beta Transus Temperature of Titanium Alloys Using Artificial Neural Network, Comput. Mater. Sci., 2005, 32(1), p 1–12CrossRef Z. Guo, S. Malinov, and W. Sha, Modelling Beta Transus Temperature of Titanium Alloys Using Artificial Neural Network, Comput. Mater. Sci., 2005, 32(1), p 1–12CrossRef
37.
Zurück zum Zitat W. Liqiang, Y. Guanjun, Y. Huabin, C. Jimin, L. Weijie, and Z. Di, Characterization of Microstructure and Mechanical Properties of TiNbZr Alloy During Heat Treatment, Rare Met. Mater. Eng., 2009, 38(7), p 1136–1140CrossRef W. Liqiang, Y. Guanjun, Y. Huabin, C. Jimin, L. Weijie, and Z. Di, Characterization of Microstructure and Mechanical Properties of TiNbZr Alloy During Heat Treatment, Rare Met. Mater. Eng., 2009, 38(7), p 1136–1140CrossRef
38.
Zurück zum Zitat W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRef
39.
Zurück zum Zitat A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Suriñach, M.D. Baró, S. González, E. Ibáñez, L. Barrios, C. Nogués, and J. Sort, Novel Ti-Zr-Hf-Fe Nanostructured Alloy for Biomedical Applications, Materials, 2013, 11(6), p 4930–4945CrossRef A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Suriñach, M.D. Baró, S. González, E. Ibáñez, L. Barrios, C. Nogués, and J. Sort, Novel Ti-Zr-Hf-Fe Nanostructured Alloy for Biomedical Applications, Materials, 2013, 11(6), p 4930–4945CrossRef
40.
Zurück zum Zitat T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915CrossRef
41.
Zurück zum Zitat Q. Guo, Y. Zhan, H. Mo, and G. Zhang, Aging Response of the Ti-Nb System Biomaterials with β-Stabilizing Elements, Mater. Des., 2010, 31(10), p 4842–4846CrossRef Q. Guo, Y. Zhan, H. Mo, and G. Zhang, Aging Response of the Ti-Nb System Biomaterials with β-Stabilizing Elements, Mater. Des., 2010, 31(10), p 4842–4846CrossRef
42.
Zurück zum Zitat S. Banumathy, K.S. Prasad, R.K. Mandal et al., Effect of Thermomechanical Processing on Evolution of Various Phases in Ti-Nb Alloys, Bull. Mater. Sci., 2011, 34(7), p 1421–1434CrossRef S. Banumathy, K.S. Prasad, R.K. Mandal et al., Effect of Thermomechanical Processing on Evolution of Various Phases in Ti-Nb Alloys, Bull. Mater. Sci., 2011, 34(7), p 1421–1434CrossRef
43.
Zurück zum Zitat X. Tang, T. Ahmed, and H.J. Rack, Phase Transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr Alloys, J. Mater. Sci., 2000, 35(7), p 1805–1811CrossRef X. Tang, T. Ahmed, and H.J. Rack, Phase Transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr Alloys, J. Mater. Sci., 2000, 35(7), p 1805–1811CrossRef
44.
Zurück zum Zitat S.J. Li, R. Yang, M. Niinomi, Y.L. Hao, Y.Y. Cui, and Z.X. Guo, Phase Transformation During Aging and Resulting Mechanical Properties of Two Ti-Nb-Ta-Zr Alloys, Mater. Sci. Technol., 2005, 21(6), p 678–686CrossRef S.J. Li, R. Yang, M. Niinomi, Y.L. Hao, Y.Y. Cui, and Z.X. Guo, Phase Transformation During Aging and Resulting Mechanical Properties of Two Ti-Nb-Ta-Zr Alloys, Mater. Sci. Technol., 2005, 21(6), p 678–686CrossRef
45.
Zurück zum Zitat M. Geetha, A.K. Singh, A.K. Gogia, and R. Asokamani, Effect of Thermomechanical Processing on Evolution of Various Phases in Ti-Nb-Zr Alloys, J. Alloys Compd., 2004, 384(1–2), p 131–144CrossRef M. Geetha, A.K. Singh, A.K. Gogia, and R. Asokamani, Effect of Thermomechanical Processing on Evolution of Various Phases in Ti-Nb-Zr Alloys, J. Alloys Compd., 2004, 384(1–2), p 131–144CrossRef
46.
Zurück zum Zitat J. Lin, S. Ozan, K. Munir, K. Wang, X. Tong, Y. Li, G. Li, and C. Wen, Effects of Solution Treatment and Aging on the Microstructure, Mechanical Properties, and Corrosion Resistance of a β Type Ti-Ta-Hf-Zr Alloy, RSC Adv., 2017, 7(20), p 12309–12317CrossRef J. Lin, S. Ozan, K. Munir, K. Wang, X. Tong, Y. Li, G. Li, and C. Wen, Effects of Solution Treatment and Aging on the Microstructure, Mechanical Properties, and Corrosion Resistance of a β Type Ti-Ta-Hf-Zr Alloy, RSC Adv., 2017, 7(20), p 12309–12317CrossRef
47.
Zurück zum Zitat E.B. Taddei, V.A.R. Henriques, R.M. da Silva, and C.A.A. Cairo, Age-hardening of Ti-35Nb-7Zr-5Ta Alloy for Orthopaedic Implants, J. Mater. Res., 2007, 10(3), p 289–292CrossRef E.B. Taddei, V.A.R. Henriques, R.M. da Silva, and C.A.A. Cairo, Age-hardening of Ti-35Nb-7Zr-5Ta Alloy for Orthopaedic Implants, J. Mater. Res., 2007, 10(3), p 289–292CrossRef
48.
Zurück zum Zitat M.T. Mohammed and M. GEETHA, Effect of Thermo-Mechanical Processing on Microstructure and Electrochemical Behavior of Ti-Nb-Zr-V New Metastable β Titanium Biomedical Alloy, Trans. Nonferr. Met. Soc. China, 2015, 25(3), p 759–769CrossRef M.T. Mohammed and M. GEETHA, Effect of Thermo-Mechanical Processing on Microstructure and Electrochemical Behavior of Ti-Nb-Zr-V New Metastable β Titanium Biomedical Alloy, Trans. Nonferr. Met. Soc. China, 2015, 25(3), p 759–769CrossRef
49.
Zurück zum Zitat T. Furuhara, T. Maki, and T. Makino, Microstructure Control by Thermomechanical Processing in β-Ti-15-3 alloy, J. Mater. Process. Technol., 2001, 117(3), p 318–323CrossRef T. Furuhara, T. Maki, and T. Makino, Microstructure Control by Thermomechanical Processing in β-Ti-15-3 alloy, J. Mater. Process. Technol., 2001, 117(3), p 318–323CrossRef
50.
Zurück zum Zitat Y. Mantani and M. Tajima, Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng. A, 2006, 438, p 315–319CrossRef Y. Mantani and M. Tajima, Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng. A, 2006, 438, p 315–319CrossRef
51.
Zurück zum Zitat Y.L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y.L. Zhou, K. Fukunaga, and A. Suzuki, Young’s Modulus and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr in Relation to α″ Martensite, Metall. Mater. Trans. A, 2002, 33(10), p 3137–3144CrossRef Y.L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y.L. Zhou, K. Fukunaga, and A. Suzuki, Young’s Modulus and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr in Relation to α″ Martensite, Metall. Mater. Trans. A, 2002, 33(10), p 3137–3144CrossRef
52.
Zurück zum Zitat D. Kuroda, H. Kawasaki, A. Yamamoto et al., Mechanical Properties and Microstructures of New Ti-Fe-Ta and Ti-Fe-Ta-Zr System Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 312–320CrossRef D. Kuroda, H. Kawasaki, A. Yamamoto et al., Mechanical Properties and Microstructures of New Ti-Fe-Ta and Ti-Fe-Ta-Zr System Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 312–320CrossRef
53.
Zurück zum Zitat J. Slokar, T. Matkovic, and P. Matkovic, Alloy Design and Property Evaluation of New Ti-Cr-Nb Alloys, Mater. Des., 2012, 33, p 26–30CrossRef J. Slokar, T. Matkovic, and P. Matkovic, Alloy Design and Property Evaluation of New Ti-Cr-Nb Alloys, Mater. Des., 2012, 33, p 26–30CrossRef
54.
Zurück zum Zitat Z.B. Zhou, F.E.I. Yue, M.-J. Lai, H.-C. Kou, H. Chang, G.-Q. Shang, Z.-S. Zhu, J.-S. Li, and Z.H.O.U. Lian, Microstructure and Mechanical Properties of New Metastable β Type Titanium Alloy, Trans. Nonferr. Met. Soc. China, 2010, 20(12), p 2253–2258CrossRef Z.B. Zhou, F.E.I. Yue, M.-J. Lai, H.-C. Kou, H. Chang, G.-Q. Shang, Z.-S. Zhu, J.-S. Li, and Z.H.O.U. Lian, Microstructure and Mechanical Properties of New Metastable β Type Titanium Alloy, Trans. Nonferr. Met. Soc. China, 2010, 20(12), p 2253–2258CrossRef
55.
Zurück zum Zitat L. Wang, Z. Lin, X. Wang, Q. Shi, W. Yin, D. Zhang, Z. Liu, and W. Lu, Effect of Aging Treatment on Microstructure and Mechanical Properties of Ti27Nb2Ta3Zr β Titanium Alloy for Implant Applications, Mater. Trans., 2014, 55(1), p 141–146CrossRef L. Wang, Z. Lin, X. Wang, Q. Shi, W. Yin, D. Zhang, Z. Liu, and W. Lu, Effect of Aging Treatment on Microstructure and Mechanical Properties of Ti27Nb2Ta3Zr β Titanium Alloy for Implant Applications, Mater. Trans., 2014, 55(1), p 141–146CrossRef
56.
Zurück zum Zitat S. Xu, L.I.U. Yong, L.I.U. Bin, W.A.N.G. Xin, and Z. Chen, Microstructural Evolution and Mechanical Properties of Ti-5Al-5Mo-5V-3Cr Alloy by Heat Treatment with Continuous Temperature Gradient, Trans. Nonferr. Met. Soc. China, 2018, 28(2), p 273–281CrossRef S. Xu, L.I.U. Yong, L.I.U. Bin, W.A.N.G. Xin, and Z. Chen, Microstructural Evolution and Mechanical Properties of Ti-5Al-5Mo-5V-3Cr Alloy by Heat Treatment with Continuous Temperature Gradient, Trans. Nonferr. Met. Soc. China, 2018, 28(2), p 273–281CrossRef
57.
Zurück zum Zitat S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Effect of Solution Treatment and Aging on Microstructure and Tensile Properties of High Strength β Titanium Alloy, Ti-5Al-5V-5Mo-3Cr, Mater. Des., 2015, 66(Part B), p 596–610CrossRef S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Effect of Solution Treatment and Aging on Microstructure and Tensile Properties of High Strength β Titanium Alloy, Ti-5Al-5V-5Mo-3Cr, Mater. Des., 2015, 66(Part B), p 596–610CrossRef
58.
Zurück zum Zitat M.T. Mohammed, Z.A. Khan, G. Manivasagam, and A.N. Siddiquee, Influence of Thermomechanical Processing on Biomechanical Compatibility and Electrochemical Behavior of New Near Beta Alloy, Ti-20.6Nb-13.6Zr-0.5V, Int. J. Nanomed., 2015, 10(1), p 223CrossRef M.T. Mohammed, Z.A. Khan, G. Manivasagam, and A.N. Siddiquee, Influence of Thermomechanical Processing on Biomechanical Compatibility and Electrochemical Behavior of New Near Beta Alloy, Ti-20.6Nb-13.6Zr-0.5V, Int. J. Nanomed., 2015, 10(1), p 223CrossRef
59.
Zurück zum Zitat P. Majumdar, S.B. Singh, and M. Chakraborty, The Role of Heat Treatment on Microstructure and Mechanical Properties of Ti-13Zr-13Nb Alloy for Biomedical Load Bearing Applications, J. Mech. Behav. Biomed. Mater., 2011, 4(7), p 1132–1144CrossRef P. Majumdar, S.B. Singh, and M. Chakraborty, The Role of Heat Treatment on Microstructure and Mechanical Properties of Ti-13Zr-13Nb Alloy for Biomedical Load Bearing Applications, J. Mech. Behav. Biomed. Mater., 2011, 4(7), p 1132–1144CrossRef
60.
Zurück zum Zitat M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8(8), p 726–731 M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8(8), p 726–731
61.
Zurück zum Zitat R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, and R.M. Souto, Metastable Beta Ti-Nb-Mo Alloys with Improved Corrosion Resistance in Saline Solution, Electrochim. Acta, 2014, 137, p 280–289CrossRef R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, and R.M. Souto, Metastable Beta Ti-Nb-Mo Alloys with Improved Corrosion Resistance in Saline Solution, Electrochim. Acta, 2014, 137, p 280–289CrossRef
62.
Zurück zum Zitat E. Alkhateeb and S. Virtanen, Influence of Surface Self-modification in Ringer’s Solution on the Passive Behavior of Titanium, J. Biomed. Mater. Res. Part A, 2005, 75(4), p 934–940CrossRef E. Alkhateeb and S. Virtanen, Influence of Surface Self-modification in Ringer’s Solution on the Passive Behavior of Titanium, J. Biomed. Mater. Res. Part A, 2005, 75(4), p 934–940CrossRef
63.
Zurück zum Zitat Q. Li, J. Li, G. Ma, X. Liu, and D. Pan, Influence of ω Phase Precipitation on Mechanical Performance and Corrosion Resistance of Ti-Nb-Zr Alloy, Mater. Des., 2016, 111, p 421–428CrossRef Q. Li, J. Li, G. Ma, X. Liu, and D. Pan, Influence of ω Phase Precipitation on Mechanical Performance and Corrosion Resistance of Ti-Nb-Zr Alloy, Mater. Des., 2016, 111, p 421–428CrossRef
64.
Zurück zum Zitat J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang, and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2016, 62, p 36–44CrossRef J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang, and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2016, 62, p 36–44CrossRef
65.
Zurück zum Zitat S. Karimi, T. Nickchi, and A. Alfantazi, Effects of Bovine Serum Albumin on the Corrosion Behavior of AISI, 316L, Co-28Cr-6Mo, and Ti-6Al-4V Alloys in Phosphate Buffered Saline Solutions, Corros. Sci., 2011, 53, p 3262–3272CrossRef S. Karimi, T. Nickchi, and A. Alfantazi, Effects of Bovine Serum Albumin on the Corrosion Behavior of AISI, 316L, Co-28Cr-6Mo, and Ti-6Al-4V Alloys in Phosphate Buffered Saline Solutions, Corros. Sci., 2011, 53, p 3262–3272CrossRef
66.
Zurück zum Zitat N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, and C. Yang, Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes, Corros. Sci., 2016, 111, p 703–710CrossRef N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, and C. Yang, Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes, Corros. Sci., 2016, 111, p 703–710CrossRef
67.
Zurück zum Zitat A.K. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48, p 1696–1720CrossRef A.K. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48, p 1696–1720CrossRef
68.
Zurück zum Zitat G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, and R.M. Souto, Investigation of the Electrochemical Behaviour of TiMo Alloys in Simulated Physiological Solutions, Electrochim. Acta, 2013, 113, p 470–480CrossRef G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, and R.M. Souto, Investigation of the Electrochemical Behaviour of TiMo Alloys in Simulated Physiological Solutions, Electrochim. Acta, 2013, 113, p 470–480CrossRef
69.
Zurück zum Zitat T. Nishimura, S. Tamilselvi, X.H. Min, and K. Tsuzaki, Corrosion Resistance of Aging Heat-Treated Ti-8Mo-5Fe Alloy in Highly Acidic Chloride Solution, Mater. Trans., 2010, 51, p 1553–1559CrossRef T. Nishimura, S. Tamilselvi, X.H. Min, and K. Tsuzaki, Corrosion Resistance of Aging Heat-Treated Ti-8Mo-5Fe Alloy in Highly Acidic Chloride Solution, Mater. Trans., 2010, 51, p 1553–1559CrossRef
70.
Zurück zum Zitat E.N. Codaro, R.Z. Nakazato, A.L. Horovistiz, L.M.F. Ribeiro, R.B. Ribeiro, and L.D.O. Hein, An Image Analysis Study of Pit Formation on Ti-6Al-4V, J. Mater. Sci. Eng. A, 2003, 341(1–2), p 202–210CrossRef E.N. Codaro, R.Z. Nakazato, A.L. Horovistiz, L.M.F. Ribeiro, R.B. Ribeiro, and L.D.O. Hein, An Image Analysis Study of Pit Formation on Ti-6Al-4V, J. Mater. Sci. Eng. A, 2003, 341(1–2), p 202–210CrossRef
Metadaten
Titel
Influence of Thermal Treatment on the Microstructure, Mechanical Properties, and Corrosion Resistance of Newly Developed Ti20Nb13Zr Biomedical Alloy in a Simulated Body Environment
verfasst von
M. A. Hussein
M. Azeem
A. Madhan Kumar
N. Al-Aqeeli
N. K. Ankah
A. A. Sorour
Publikationsdatum
12.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03908-4

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Engineering and Performance 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.