Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-12/2019

10.06.2019 | ORIGINAL ARTICLE

Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process

verfasst von: Niknam Momenzadeh, Hadi Miyanaji, Thomas A. Berfield

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyvinylidene fluoride (PVDF), a thermoplastic material with excellent resilience and piezoelectric potential, is a natural candidate for use in filament-based additive manufacturing technologies. However, due to the high thermal expansion and low surface energy of homopolymer PVDF, fabrication of this polymer via extrusion deposition processes is challenging, often resulting in substantial stress accumulation and unwanted distortion in printed parts. To address these challenges, this work investigates the effects of adding microscale zirconium tungstate particulate to improve the printability of PVDF materials. Zirconium tungstate was specifically selected because for its demonstrated negative coefficient of thermal expansion over the range of standard filament extrusion deposition method processing temperatures. Composite filament specimens were characterized with respect to mechanical, thermal, and microstructural properties. Compared with pure homopolymer printed specimens, results show that the particulate additives effectively lowered the net coefficient of thermal expansion at the expense of yield strength and total elongation to failure, while the semi-crystalline structure showed a mild reduction in β-phase formation associated with increasing particulate content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novakova-Marcincinova L, Kuric I (2012) Basic and advanced materials for fused deposition modeling rapid prototyping technology. Manuf Ind Eng 11(1):24–27 Novakova-Marcincinova L, Kuric I (2012) Basic and advanced materials for fused deposition modeling rapid prototyping technology. Manuf Ind Eng 11(1):24–27
2.
Zurück zum Zitat Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci 48(3):514–525CrossRef Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci 48(3):514–525CrossRef
3.
Zurück zum Zitat Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126CrossRef Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126CrossRef
4.
Zurück zum Zitat Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257CrossRef Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257CrossRef
5.
Zurück zum Zitat Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRef Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRef
6.
Zurück zum Zitat Salimi A, Yousefi A (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRef Salimi A, Yousefi A (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRef
7.
Zurück zum Zitat Tarbuttona J, Leb T, Helfrichb G, Kirkpatrickb M (2017) Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manuf 10:982–989CrossRef Tarbuttona J, Leb T, Helfrichb G, Kirkpatrickb M (2017) Phase transformation and shock sensor response of additively manufactured piezoelectric PVDF. Procedia Manuf 10:982–989CrossRef
8.
Zurück zum Zitat Mhetre MR, Abhyankar HK (2017) Human exhaled air energy harvesting with specific reference to PVDF film. Eng Sci Technol Int J 20(1):332–339CrossRef Mhetre MR, Abhyankar HK (2017) Human exhaled air energy harvesting with specific reference to PVDF film. Eng Sci Technol Int J 20(1):332–339CrossRef
9.
Zurück zum Zitat Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE/ASME Trans Mechatron 19(4):1260–1267CrossRef Shapiro Y, Kósa G, Wolf A (2014) Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE/ASME Trans Mechatron 19(4):1260–1267CrossRef
10.
Zurück zum Zitat Seminara L et al (2013) Piezoelectric polymer transducer arrays for flexible tactile sensors. IEEE Sensors J 13(10):4022–4029CrossRef Seminara L et al (2013) Piezoelectric polymer transducer arrays for flexible tactile sensors. IEEE Sensors J 13(10):4022–4029CrossRef
11.
Zurück zum Zitat Jafer E, Arshak K (2008) The use of PE/PVDF pressure and temperature sensors in smart wireless sensor network system developed for environmental monitoring. Sens Lett 6(4):477–489CrossRef Jafer E, Arshak K (2008) The use of PE/PVDF pressure and temperature sensors in smart wireless sensor network system developed for environmental monitoring. Sens Lett 6(4):477–489CrossRef
12.
Zurück zum Zitat Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRef Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001CrossRef
13.
Zurück zum Zitat Mohebbi A, Mighri F, Ajji A, Rodrigue D (2018) Cellular polymer ferroelectret: a review on their development and their piezoelectric properties. Adv Polym Technol 37(2):468–483CrossRef Mohebbi A, Mighri F, Ajji A, Rodrigue D (2018) Cellular polymer ferroelectret: a review on their development and their piezoelectric properties. Adv Polym Technol 37(2):468–483CrossRef
14.
Zurück zum Zitat Porter DA, Hoang TV, Berfield TA (2017) Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit Manuf 13:81–92CrossRef Porter DA, Hoang TV, Berfield TA (2017) Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit Manuf 13:81–92CrossRef
15.
Zurück zum Zitat Kirkpatrick MB et al (2016) Characterization of 3D printed piezoelectric sensors: determination of d 33 piezoelectric coefficient for 3D printed polyvinylidene fluoride sensors. In: SENSORS, 2016 IEEE. IEEE Kirkpatrick MB et al (2016) Characterization of 3D printed piezoelectric sensors: determination of d 33 piezoelectric coefficient for 3D printed polyvinylidene fluoride sensors. In: SENSORS, 2016 IEEE. IEEE
16.
Zurück zum Zitat Kim H, Fernando T, Li M, Lin Y, Tseng TLB (2018) Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J Compos Mater 52(2):197–206CrossRef Kim H, Fernando T, Li M, Lin Y, Tseng TLB (2018) Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J Compos Mater 52(2):197–206CrossRef
17.
Zurück zum Zitat Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng TL(B) (2017) Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater Struct 26(8):085027CrossRef Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng TL(B) (2017) Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater Struct 26(8):085027CrossRef
18.
Zurück zum Zitat Cheng S, Lau KT, Liu T, Zhao Y, Lam PM, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B 40(7):650–654CrossRef Cheng S, Lau KT, Liu T, Zhao Y, Lam PM, Yin Y (2009) Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B 40(7):650–654CrossRef
19.
Zurück zum Zitat Kantaros A, Karalekas D (2013) Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des 50:44–50CrossRef Kantaros A, Karalekas D (2013) Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des 50:44–50CrossRef
20.
Zurück zum Zitat Economidou SN, Karalekas D (2016) Optical sensor-based measurements of thermal expansion coefficient in additive manufacturing. Polym Test 51:117–121CrossRef Economidou SN, Karalekas D (2016) Optical sensor-based measurements of thermal expansion coefficient in additive manufacturing. Polym Test 51:117–121CrossRef
21.
Zurück zum Zitat Wang Y, Cakmak M (1998) Hierarchical structure gradients developed in injection-molded PVDF and PVDF–PMMA blends. I. Optical and thermal analysis. J Appl Polym Sci 68(6):909–926CrossRef Wang Y, Cakmak M (1998) Hierarchical structure gradients developed in injection-molded PVDF and PVDF–PMMA blends. I. Optical and thermal analysis. J Appl Polym Sci 68(6):909–926CrossRef
22.
Zurück zum Zitat Zhong GJ, Li ZM (2005) Injection molding-induced morphology of thermoplastic polymer blends. Polym Eng Sci 45(12):1655–1665CrossRef Zhong GJ, Li ZM (2005) Injection molding-induced morphology of thermoplastic polymer blends. Polym Eng Sci 45(12):1655–1665CrossRef
23.
Zurück zum Zitat Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777CrossRef Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777CrossRef
24.
Zurück zum Zitat Lous GM, Cornejo IA, McNulty TF, Safari A, Danforth SC (2000) Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics. J Am Ceram Soc 83(1):124–128CrossRef Lous GM, Cornejo IA, McNulty TF, Safari A, Danforth SC (2000) Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics. J Am Ceram Soc 83(1):124–128CrossRef
25.
Zurück zum Zitat Masood S, Song W (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25(7):587–594CrossRef Masood S, Song W (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25(7):587–594CrossRef
26.
Zurück zum Zitat Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B 80:369–378CrossRef Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B 80:369–378CrossRef
27.
Zurück zum Zitat Chu X et al (2010) Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 50(2):84–88CrossRef Chu X et al (2010) Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 50(2):84–88CrossRef
28.
Zurück zum Zitat Luo N, Xu R, Yang M, Yuan X, Zhong H, Fan Y (2015) Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization. J Environ Sci 38:24–35CrossRef Luo N, Xu R, Yang M, Yuan X, Zhong H, Fan Y (2015) Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization. J Environ Sci 38:24–35CrossRef
29.
Zurück zum Zitat Oddone V, Wimpory RC, Reich S (2019) Understanding the negative thermal expansion in planar graphite–metal composites. J Mater Sci 54(2):1267–1274CrossRef Oddone V, Wimpory RC, Reich S (2019) Understanding the negative thermal expansion in planar graphite–metal composites. J Mater Sci 54(2):1267–1274CrossRef
30.
Zurück zum Zitat Evans JS (1999) Negative thermal expansion materials. J Chem Soc Dalton Transactions (19):3317–3326 Evans JS (1999) Negative thermal expansion materials. J Chem Soc Dalton Transactions (19):3317–3326
31.
Zurück zum Zitat Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13(1):013001CrossRef Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13(1):013001CrossRef
32.
Zurück zum Zitat Niknam Momenzadeh HM, Porter D, Berfield T (2018) Polyvinylidene fluoride (PVDF) as a feedstock material in material extrusion additive manufacturing process. Rapid Prototyp J Niknam Momenzadeh HM, Porter D, Berfield T (2018) Polyvinylidene fluoride (PVDF) as a feedstock material in material extrusion additive manufacturing process. Rapid Prototyp J
33.
Zurück zum Zitat Turner, P.S., The problem of thermal-expansion stresses in reinforced plastics. 1942 Turner, P.S., The problem of thermal-expansion stresses in reinforced plastics. 1942
34.
Zurück zum Zitat Johnson RR, Kural MH, Mackey GB (1981) Thermal expansion properties of composite materials. Lockheed Missiles and Space Co Inc, Sunnyvale Johnson RR, Kural MH, Mackey GB (1981) Thermal expansion properties of composite materials. Lockheed Missiles and Space Co Inc, Sunnyvale
35.
Zurück zum Zitat James J et al (2001) A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol 12(3):R1–R15CrossRef James J et al (2001) A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol 12(3):R1–R15CrossRef
36.
Zurück zum Zitat Forster AM (2015) Materials testing standards for additive manufacturing of polymer materials. ST, Department of Commerce, NI Forster AM (2015) Materials testing standards for additive manufacturing of polymer materials. ST, Department of Commerce, NI
37.
Zurück zum Zitat Dizon JRC et al (2017) Mechanical characterization of 3D-printed polymers. Addit Manuf Dizon JRC et al (2017) Mechanical characterization of 3D-printed polymers. Addit Manuf
38.
Zurück zum Zitat Huan Y, Liu Y, Yang Y, Wu Y (2007) Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J Appl Polym Sci 104(2):858–862CrossRef Huan Y, Liu Y, Yang Y, Wu Y (2007) Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J Appl Polym Sci 104(2):858–862CrossRef
Metadaten
Titel
Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process
verfasst von
Niknam Momenzadeh
Hadi Miyanaji
Thomas A. Berfield
Publikationsdatum
10.06.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-12/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03978-7

Weitere Artikel der Ausgabe 9-12/2019

The International Journal of Advanced Manufacturing Technology 9-12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.