Skip to main content

2025 | OriginalPaper | Buchkapitel

Information Extraction to Identify Novel Technologies and Trends in Renewable Energy

verfasst von : Connor MacLean, Denis Cavallucci

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Achieving carbon neutrality by 2050 requires unprecedented technological, economic, and sociological changes. With time as a scarce resource, it is crucial to base decisions on relevant facts and information to avoid misdirection. This study aims to help decision makers quickly find relevant information related to companies and organizations in the renewable energy sector. Over the course of this PhD program, we will propose several text-mining methods applied to the renewable energy sector in order to detect technological breakthroughs and new, innovative companies. These techniques include specialized Named Entity Recognition (NER) models, news summarization, and trend analysis of scientific articles. Further steps in this project will contain a TRIZ-based analysis of scientific articles in order to attribute a multi-factor score on the innovative potential of novel technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ye, J., Skiena, S.: MediaRank: computational ranking of online news sources. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD 2019. New York, NY, USA: Association for Computing Machinery, July 2019, pp. 2469–2477 (2019). https://doi.org/10.1145/3292500.3330709 Ye, J., Skiena, S.: MediaRank: computational ranking of online news sources. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD 2019. New York, NY, USA: Association for Computing Machinery, July 2019, pp. 2469–2477 (2019). https://​doi.​org/​10.​1145/​3292500.​3330709
3.
Zurück zum Zitat Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)MathSciNet Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020)MathSciNet
4.
Zurück zum Zitat Honnibal, M., Montani, I.: spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing (2017) Honnibal, M., Montani, I.: spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing (2017)
6.
Zurück zum Zitat Lo, K., Wang, L.L., Neumann, M., Kinney, R., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. Eds., Online: Association for Computational Linguistics, July 2020, pp. 4969–4983 (2020). https://doi.org/10.18653/v1/2020.acl-main.447 Lo, K., Wang, L.L., Neumann, M., Kinney, R., Weld, D.S.: S2ORC: the semantic scholar open research corpus. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. Eds., Online: Association for Computational Linguistics, July 2020, pp. 4969–4983 (2020). https://​doi.​org/​10.​18653/​v1/​2020.​acl-main.​447
9.
Zurück zum Zitat Tedeschi, S., Maiorca, V., Campolungo, N., Cecconi, F., Navigli, R.: WikiNEuRal: combined neural and knowledge-based silver data creation for multilingual NER. In: Moens, M.-F., Huang, X., Specia, L., Yih, S.W. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic: Association for Computational Linguistics, November 2021, pp. 2521–2533 (2021). https://doi.org/10.18653/v1/2021.findings-emnlp.215 Tedeschi, S., Maiorca, V., Campolungo, N., Cecconi, F., Navigli, R.: WikiNEuRal: combined neural and knowledge-based silver data creation for multilingual NER. In: Moens, M.-F., Huang, X., Specia, L., Yih, S.W. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic: Association for Computational Linguistics, November 2021, pp. 2521–2533 (2021). https://​doi.​org/​10.​18653/​v1/​2021.​findings-emnlp.​215
11.
Zurück zum Zitat Korbak, T., Elsahar, H., Kruszewski, G., Dymetman, M.: Controlling conditional language models without catastrophic forgetting. In: Proceedings of the 39th International Conference on Machine Learning, PMLR, June 2022, pp. 11499–11528 (2022). Accessed on 19 Apr 2024. https://proceedings.mlr.press/v162/korbak22a.html Korbak, T., Elsahar, H., Kruszewski, G., Dymetman, M.: Controlling conditional language models without catastrophic forgetting. In: Proceedings of the 39th International Conference on Machine Learning, PMLR, June 2022, pp. 11499–11528 (2022). Accessed on 19 Apr 2024. https://​proceedings.​mlr.​press/​v162/​korbak22a.​html
12.
Zurück zum Zitat Weichselbraun, A., Streiff, D., Scharl, A.: Linked enterprise data for fine grained named entity linking and web intelligence. In: Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), in WIMS 2014. New York, NY, USA: Association for Computing Machinery, June 2014, pp. 1–11 (2014). https://doi.org/10.1145/2611040.2611052 Weichselbraun, A., Streiff, D., Scharl, A.: Linked enterprise data for fine grained named entity linking and web intelligence. In: Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), in WIMS 2014. New York, NY, USA: Association for Computing Machinery, June 2014, pp. 1–11 (2014). https://​doi.​org/​10.​1145/​2611040.​2611052
16.
Zurück zum Zitat Satheesh, D.K., Jahnavi, A., Iswarya, L., Ayesha, K., Bhanusekhar, G., Hanisha, K.: Resume ranking based on job description using SpaCy NER model, vol. 07, no. 05 (2020) Satheesh, D.K., Jahnavi, A., Iswarya, L., Ayesha, K., Bhanusekhar, G., Hanisha, K.: Resume ranking based on job description using SpaCy NER model, vol. 07, no. 05 (2020)
24.
Zurück zum Zitat Douze, M., et al.: The Faiss library (2024) Douze, M., et al.: The Faiss library (2024)
29.
Zurück zum Zitat Altshuller, G.: 40 Principles: TRIZ Keys to Technical Innovation. Technical Innovation Center, Inc. (2002) Altshuller, G.: 40 Principles: TRIZ Keys to Technical Innovation. Technical Innovation Center, Inc. (2002)
30.
Zurück zum Zitat Berdyugina, D., Cavallucci, D.: Automatic extraction of inventive information out of patent texts in support of manufacturing design studies using Natural Languages Processing. J. Intell. Manuf. 34(5), 2495–2509 (2023)CrossRef Berdyugina, D., Cavallucci, D.: Automatic extraction of inventive information out of patent texts in support of manufacturing design studies using Natural Languages Processing. J. Intell. Manuf. 34(5), 2495–2509 (2023)CrossRef
Metadaten
Titel
Information Extraction to Identify Novel Technologies and Trends in Renewable Energy
verfasst von
Connor MacLean
Denis Cavallucci
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_22