Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2014 | Aufsatz | Ausgabe 5/2014

WIRTSCHAFTSINFORMATIK 5/2014

Informationsunschärfe in Big Data

Erkenntnisse aus sozialen Medien in Stadtgebieten

Zeitschrift:
WIRTSCHAFTSINFORMATIK > Ausgabe 5/2014
Autoren:
Johannes Bendler, Sebastian Wagner, Dipl.-Vw. Tobias Brandt, Prof. Dr. Dirk Neumann
Wichtige Hinweise
Angenommen nach einer Überarbeitung durch die Herausgeber des Schwerpunktthemas.
This article is also available in English via http://​www.​springerlink.​com and http://​www.​bise-journal.​org: Bendler J, Wagner S, Brandt T, Neumann D (2014) Taming Uncertainty in Big Data. Evidence from Social Media in Urban Areas. Bus Inf Syst Eng. doi: 10.​1007/​s12599-014-0342-4.

Zusammenfassung

Während die klassische Definition von Big Data ursprünglich nur die drei Größen Datenmenge (Volume), Datenrate (Velocity) und Datenvielfalt (Variety) umfasste, ist in jüngster Zeit der Wahrheitsgehalt (Veracity) als weitere Dimension mehr und mehr in den wissenschaftlichen und praktischen Fokus gerückt. Der noch immer wachsende Bereich der Sozialen Medien und damit verbundene benutzergenerierte Datenmengen verlangen nach neuen Methoden, die die enthaltene Datenunschärfe abschätzen und kontrollieren können. Dieser Beitrag widmet sich einem Aspekt der Datenunschärfe und stellt einen neuartigen Ansatz vor, der die Verlässlichkeit von benutzergenerierten Daten auf Basis von wiederkehrenden Mustern abschätzt. Zu diesem Zweck wird eine große Menge von Twitter-Statusnachrichten mit geographischer Standortinformation aus San Francisco untersucht und mit Points of Interest (POIs), wie beispielsweise Bars, Restaurants oder Parks, in Verbindung gebracht. Das vorgeschlagene Modell wird durch kausale Beziehungen zwischen Points of Interest und den in der Umgebung vorliegenden Twitter-Meldungen validiert. Weiterhin wird die zeitliche Dimension dieser Beziehung in Betracht gezogen, um so in Abhängigkeit der Art des POI wiederkehrende Muster zu identifizieren. Die durchgeführten Analysen münden in einem Indikator, der die Verlässlichkeit von vorliegenden Daten in räumlicher und zeitlicher Dimension abschätzt.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2014

WIRTSCHAFTSINFORMATIK 5/2014 Zur Ausgabe

Research Notes

Big Data

Editorial

Big Data

Premium Partner

    Bildnachweise