Skip to main content
Erschienen in: Neural Processing Letters 2/2021

20.01.2021

Infrared Handprint Classification Using Deep Convolution Neural Network

verfasst von: Zijie Zhou, Baofeng Zhang, Xiao Yu

Erschienen in: Neural Processing Letters | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Infrared handprint image is an image that applies infrared imaging technology to criminal investigation and other special scenes. It can be used to detect traces that cannot be directly observed under visible light.Efficient identification and analysis of handprint are conducive to obtaining more information for solving cases. However, due to thermal diffusion, the depth fuzzy feature of infrared handprint is not conducive to detection and classification, and the convolution neural network technology is widely used in the field of natural image classification because of its excellent feature extraction ability.Therefore, aiming at the problem of fuzzy infrared handprint classification, we design a novel convolution neural network, which includes a convolutional layer, small MBConv block and fully connected layer.We choose EfficientNet which is suitable for infrared handprint classification from classical convolution neural network as our basic network. And propose a small MBConv block to improve the network model, so that the network has fewer training parameters, effectively reduces the problem of over fitting, and improves the classification performance compared with the original model.We use our model for the automatic classification of infrared handprint images. The results show that our model achieves the average accuracyto 95.78% for multi-class classification, which is 2.19% higher than the original model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li H, Qi X, Xie W (2020) Fast infrared and visible image fusion with structural decomposition[J]. Knowl Based Syst 204:106182CrossRef Li H, Qi X, Xie W (2020) Fast infrared and visible image fusion with structural decomposition[J]. Knowl Based Syst 204:106182CrossRef
2.
Zurück zum Zitat Dunderdale C, Brettenny W, Clohessy C et al (2020) Photovoltaic defect classification through thermal infrared imaging using a machine learning approach[J]. Prog Photovolt Res Appl 28(3):177–183CrossRef Dunderdale C, Brettenny W, Clohessy C et al (2020) Photovoltaic defect classification through thermal infrared imaging using a machine learning approach[J]. Prog Photovolt Res Appl 28(3):177–183CrossRef
3.
Zurück zum Zitat Fu D, Sun J, Yang T et al (2018) Target extraction of hand infrared trace images based on artificial targeting immunotherapy [J]. J Electron Inf Technol 40(002):346–352 Fu D, Sun J, Yang T et al (2018) Target extraction of hand infrared trace images based on artificial targeting immunotherapy [J]. J Electron Inf Technol 40(002):346–352
4.
Zurück zum Zitat Yang T, Fu D (2016) Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model [J]. Chin J Eng 38(6):876–885 Yang T, Fu D (2016) Extraction of blurred infrared targets based on a manifold regularized multiple-kernel model [J]. Chin J Eng 38(6):876–885
5.
Zurück zum Zitat Yu X, Fu D (2014) Target extraction from blurred trace infrared images with a superstring galaxy template algorithm[J]. Infrared Phys Technol 64:9–12CrossRef Yu X, Fu D (2014) Target extraction from blurred trace infrared images with a superstring galaxy template algorithm[J]. Infrared Phys Technol 64:9–12CrossRef
6.
Zurück zum Zitat Yang D, Lu A, Ren D et al (2017) Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm[J]. Infrared Phys Technol 86:23–34CrossRef Yang D, Lu A, Ren D et al (2017) Rapid determination of biogenic amines in cooked beef using hyperspectral imaging with sparse representation algorithm[J]. Infrared Phys Technol 86:23–34CrossRef
7.
Zurück zum Zitat Fabelo H, Ortega S, Casselden E et al (2018) SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples[J]. Sensors 18(12):4487CrossRef Fabelo H, Ortega S, Casselden E et al (2018) SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples[J]. Sensors 18(12):4487CrossRef
8.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition[J]. Comput Ence Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition[J]. Comput Ence
9.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V et al (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning[J] Szegedy C, Ioffe S, Vanhoucke V et al (2016) Inception-v4, Inception-ResNet and the impact of residual connections on learning[J]
10.
Zurück zum Zitat Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp 4510–4520
11.
Zurück zum Zitat Andrew H, Mark S, Grace C, Liang-Chieh C, Bo C, Mingxing T, Weijun W, Yukun Z, Ruoming P, Vijay V et al (2019) Searching for mobilenetv3. In: ICCV Andrew H, Mark S, Grace C, Liang-Chieh C, Bo C, Mingxing T, Weijun W, Yukun Z, Ruoming P, Vijay V et al (2019) Searching for mobilenetv3. In: ICCV
12.
Zurück zum Zitat Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely efficient convolutional neural network for mobile devices. CVPR Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely efficient convolutional neural network for mobile devices. CVPR
13.
Zurück zum Zitat Yu J, Tao D, Wang M et al (2015) Learning to rank using user clicks and visual features for image retrieval[J]. IEEE Trans Cybern 45(4):767–779CrossRef Yu J, Tao D, Wang M et al (2015) Learning to rank using user clicks and visual features for image retrieval[J]. IEEE Trans Cybern 45(4):767–779CrossRef
14.
Zurück zum Zitat Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction[J]. IEEE Trans Image Process 27(5):2420–2432MathSciNetCrossRef Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction[J]. IEEE Trans Image Process 27(5):2420–2432MathSciNetCrossRef
15.
Zurück zum Zitat Chen X, Xiang S, Liu CL et al (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks[C]. In: Pattern recognition, IEEE, pp 1797–1801 Chen X, Xiang S, Liu CL et al (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks[C]. In: Pattern recognition, IEEE, pp 1797–1801
16.
Zurück zum Zitat Fairuz S, Habaebi MH, Elsheikh EMA et al (2018) Convolutional neural network-based finger vein recognition using near infrared Images[C]. In: 2018 7th international conference on computer and communication engineering (ICCCE) Fairuz S, Habaebi MH, Elsheikh EMA et al (2018) Convolutional neural network-based finger vein recognition using near infrared Images[C]. In: 2018 7th international conference on computer and communication engineering (ICCCE)
17.
Zurück zum Zitat Song W, Li S, Fang L et al (2018) Hyperspectral Image Classification With Deep Feature Fusion Network[J]. IEEE Trans Geosci Remote Sens 56(6):3173–3184CrossRef Song W, Li S, Fang L et al (2018) Hyperspectral Image Classification With Deep Feature Fusion Network[J]. IEEE Trans Geosci Remote Sens 56(6):3173–3184CrossRef
18.
Zurück zum Zitat Kanavati F, Toyokawa G, Momosaki S et al (2020) Weakly-supervised learning for lung carcinoma classification using deep learning[J]. Entific Rep 10(1):1–11 Kanavati F, Toyokawa G, Momosaki S et al (2020) Weakly-supervised learning for lung carcinoma classification using deep learning[J]. Entific Rep 10(1):1–11
19.
Zurück zum Zitat Liu Q, Li Z, Shuai S et al (2020) Spectral group attention networks for hyperspectral image classification with spectral separability analysis[J]. Infrared Phys Technol 5:103340CrossRef Liu Q, Li Z, Shuai S et al (2020) Spectral group attention networks for hyperspectral image classification with spectral separability analysis[J]. Infrared Phys Technol 5:103340CrossRef
20.
Zurück zum Zitat Hong C, Yu J, Zhang J et al (2019) Multimodal face-pose estimation with multitask manifold deep learning[J]. IEEE Trans Industr Inf 15(7):3952–3961CrossRef Hong C, Yu J, Zhang J et al (2019) Multimodal face-pose estimation with multitask manifold deep learning[J]. IEEE Trans Industr Inf 15(7):3952–3961CrossRef
21.
Zurück zum Zitat Yu J, Tan M, Zhang H et al (2019) Hierarchical Deep Click Feature Prediction for Fine-grained Image Recognition[J]. IEEE Trans Pattern Anal Mach Intell 99:1–10 Yu J, Tan M, Zhang H et al (2019) Hierarchical Deep Click Feature Prediction for Fine-grained Image Recognition[J]. IEEE Trans Pattern Anal Mach Intell 99:1–10
22.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 770–778
23.
Zurück zum Zitat Hu J, Shen L, Albanie S et al (2017) Squeeze-and-Excitation Networks[J]. IEEE Trans Pattern Anal Mach Intell 99:7132–7141 Hu J, Shen L, Albanie S et al (2017) Squeeze-and-Excitation Networks[J]. IEEE Trans Pattern Anal Mach Intell 99:7132–7141
24.
Zurück zum Zitat Tan M, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks[J] Tan M, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks[J]
25.
Zurück zum Zitat Tan M, Chen B, Pang R et al (2018) MnasNet: platform-aware neural architecture search for mobile[J] Tan M, Chen B, Pang R et al (2018) MnasNet: platform-aware neural architecture search for mobile[J]
26.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML
27.
Zurück zum Zitat Jiang LY (2019) Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNetmodule[J]. PLoS One Jiang LY (2019) Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNetmodule[J]. PLoS One
28.
Zurück zum Zitat Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: CVPR, pp 1251–1258 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: CVPR, pp 1251–1258
29.
Zurück zum Zitat Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: practical guidelines for efficientcnn architecture design. In: ECCV Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: practical guidelines for efficientcnn architecture design. In: ECCV
30.
Zurück zum Zitat Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2020) GhostNet: more features from cheap operations. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), Seattle, WA, USA, pp 1577–1586 Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2020) GhostNet: more features from cheap operations. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), Seattle, WA, USA, pp 1577–1586
31.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
32.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the Inception Architecture for Computer Vision[C]. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the Inception Architecture for Computer Vision[C]. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2818–2826
Metadaten
Titel
Infrared Handprint Classification Using Deep Convolution Neural Network
verfasst von
Zijie Zhou
Baofeng Zhang
Xiao Yu
Publikationsdatum
20.01.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2021
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10429-6

Weitere Artikel der Ausgabe 2/2021

Neural Processing Letters 2/2021 Zur Ausgabe

Neuer Inhalt