Skip to main content
Erschienen in: Current Sustainable/Renewable Energy Reports 3/2014

01.09.2014 | Sustainable and Renewable Fuels (X Cai, Section Editor)

Infrastructure Support for Bioenergy Development in Cities

verfasst von: Tze Ling Ng

Erschienen in: Current Sustainable/Renewable Energy Reports | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Worldwide, bioenergy production is increasing. However, there is still a lack of understanding of the types of infrastructural modifications necessary to support further bioenergy development in ways that are both cost effective and environmentally sustainable. This paper provides an overview of the infrastructure support crucial for enabling large-scale bioenergy production in cities. Three waste-to-bioenergy pathways to produce biodiesel from waste oils, syngas from plasma gasification of municipal solid waste (MSW), and bioenergy from algae are reviewed. (i) To produce biodiesel from waste oils, a cost-effective feedstock collection system is key as feedstock cost, including transportation cost, is the single largest contributor to total cost. (ii) To promote the production of syngas from MSW by plasma gasification, a decentralized approach is recommended in the near to medium term. This is because at present, there is still little experience operating large MSW plasma gasification plants. A decentralized approach creates opportunities for public-private partnerships, leading to investments to gain operational experience. Soft infrastructure in the form of a well-developed recycling program or legislation is also necessary to ensure the gasification does not compete with recycling for recyclables. (iii) To produce bioenergy from algae, two infrastructures are vital. The first is infrastructure to integrate wastewater treatment and algae cultivation with nutrients and carbon dioxide recycling. The second is infrastructure to create large surface areas from sides of buildings and/or rooftops that are well exposed to sunlight for algae growth. Provided these infrastructures are in place, the three pathways, combined, have the potential to supply up to 12–16 % of Hong Kong’s electricity demand if converting the energy products from the pathways to electricity. Further, the pathways create new interdependencies between the waste and energy sectors. The interdependencies, while synergistic, could lead to new vulnerabilities such that a failure of one sector will cause a failure in the other as well. Care must be taken when designing systems to minimize this.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Technology roadmap, bioenergy for heat and power. Renewable Energy Division, International Energy Agency, 2012. Technology roadmap, bioenergy for heat and power. Renewable Energy Division, International Energy Agency, 2012.
3.
Zurück zum Zitat Ng TL, Cai X, Ouyang Y. Some implications of biofuel development for engineering infrastructures in the United States. Biofuels Bioproducts Biorefining. 2011;5(5):581–92.CrossRef Ng TL, Cai X, Ouyang Y. Some implications of biofuel development for engineering infrastructures in the United States. Biofuels Bioproducts Biorefining. 2011;5(5):581–92.CrossRef
4.••
Zurück zum Zitat Ng TL, Cai X. Relationships between interdependency, reliability, and vulnerability of infrastructure systems: case study of biofuel infrastructure development. J Infrastruct Syst. 2013;20(1):04013008. This study gave a new perspective on characterizing and quantifying interdependency and its implications. By differentiating between linear and nonlinear interdependency between infrastructure systems, the study was able to show that linear interdependency affects system performance under uncertainty. The study also showed the number and locations of facilities to affect interdependency, hence performance.CrossRef Ng TL, Cai X. Relationships between interdependency, reliability, and vulnerability of infrastructure systems: case study of biofuel infrastructure development. J Infrastruct Syst. 2013;20(1):04013008. This study gave a new perspective on characterizing and quantifying interdependency and its implications. By differentiating between linear and nonlinear interdependency between infrastructure systems, the study was able to show that linear interdependency affects system performance under uncertainty. The study also showed the number and locations of facilities to affect interdependency, hence performance.CrossRef
5.
Zurück zum Zitat Hajibabai L, Ouyang Y. Integrated planning of supply chain networks and multimodal transportation infrastructure expansion: model development and application to the biofuel industry. Comp Aid Civil Infrastruct Engin. 2013;28(4):247–59.CrossRef Hajibabai L, Ouyang Y. Integrated planning of supply chain networks and multimodal transportation infrastructure expansion: model development and application to the biofuel industry. Comp Aid Civil Infrastruct Engin. 2013;28(4):247–59.CrossRef
6.
Zurück zum Zitat Bai Y, Hwang T, Kang S, Ouyang Y. Biofuel refinery location and supply chain planning under traffic congestion. Transport Res Part B: Method. 2011;45(1):162–75.CrossRef Bai Y, Hwang T, Kang S, Ouyang Y. Biofuel refinery location and supply chain planning under traffic congestion. Transport Res Part B: Method. 2011;45(1):162–75.CrossRef
7.
Zurück zum Zitat Richard TL. Challenges in scaling up biofuels infrastructure. Science (Washington). 2010;329(5993):793–6.CrossRef Richard TL. Challenges in scaling up biofuels infrastructure. Science (Washington). 2010;329(5993):793–6.CrossRef
9.
Zurück zum Zitat van der Hoeven M. Urban energy policy design. Paris: International Energy Agency; 2012. van der Hoeven M. Urban energy policy design. Paris: International Energy Agency; 2012.
10.
Zurück zum Zitat Morrow WR, Griffin WM, Matthews HS. Modeling switchgrass derived cellulosic ethanol distribution in the United States. Environ Sci Technol. 2006;40(9):2877–286.CrossRef Morrow WR, Griffin WM, Matthews HS. Modeling switchgrass derived cellulosic ethanol distribution in the United States. Environ Sci Technol. 2006;40(9):2877–286.CrossRef
11.
Zurück zum Zitat Hamelinck CN, Suurs RAA, Faaij APC. International bioenergy transport costs and energy balance. Biomass Bioenergy. 2005;29(2):114–34.CrossRef Hamelinck CN, Suurs RAA, Faaij APC. International bioenergy transport costs and energy balance. Biomass Bioenergy. 2005;29(2):114–34.CrossRef
12.
Zurück zum Zitat Tahvanainen T, Anttila P. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy. 2011;35(8):3360–75.CrossRef Tahvanainen T, Anttila P. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy. 2011;35(8):3360–75.CrossRef
13.
Zurück zum Zitat Junginger M, Goh CS, Faaij A. International bioenergy trade: history, status and outlook on securing sustainable bioenergy supply, demand and markets: Dordrecht: Springer; 2014. Junginger M, Goh CS, Faaij A. International bioenergy trade: history, status and outlook on securing sustainable bioenergy supply, demand and markets: Dordrecht: Springer; 2014.
14.
Zurück zum Zitat Guo A. ASB Biodiesel opens waste oil plant to supply Hong Kong drivers. Bloomberg. 2013 October 23. Guo A. ASB Biodiesel opens waste oil plant to supply Hong Kong drivers. Bloomberg. 2013 October 23.
15.
Zurück zum Zitat Voegele E. Biodiesel in the Golden Gate city. Biodiesel Magazine. 2009 January 15. Voegele E. Biodiesel in the Golden Gate city. Biodiesel Magazine. 2009 January 15.
16.
Zurück zum Zitat Monitoring of solid waste in Hong Kong, waste statistics for 2011. Hong Kong Environmental Protection Department; 2012 Monitoring of solid waste in Hong Kong, waste statistics for 2011. Hong Kong Environmental Protection Department; 2012
17.
Zurück zum Zitat Project profile for environmental impact assessment of development of a grease trap waste treatment facility at West Kowloon Transfer Station. Prepared by Environmental Resources Management for the Hong Kong Environmental Protection Department, 2005. Project profile for environmental impact assessment of development of a grease trap waste treatment facility at West Kowloon Transfer Station. Prepared by Environmental Resources Management for the Hong Kong Environmental Protection Department, 2005.
18.
Zurück zum Zitat Wiltsee G. Urban waste grease resource assessment. National Renewable Energy Laboratory, 1998. Wiltsee G. Urban waste grease resource assessment. National Renewable Energy Laboratory, 1998.
19.
Zurück zum Zitat Road sector diesel fuel consumption per capita (kg of oil equivalent): The World Bank; 2014. Available from: data.worldbank.org/indicator/IS.ROD.DESL.PC. Road sector diesel fuel consumption per capita (kg of oil equivalent): The World Bank; 2014. Available from: data.worldbank.org/indicator/IS.ROD.DESL.PC.
20.
Zurück zum Zitat Hong Kong: the facts, water, power and gas supplies. Hong Kong Information Services Department; 2013. Hong Kong: the facts, water, power and gas supplies. Hong Kong Information Services Department; 2013.
21.
Zurück zum Zitat Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr Energy Combustion Sci. 2007;33(3):233–71.CrossRef Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr Energy Combustion Sci. 2007;33(3):233–71.CrossRef
22.
Zurück zum Zitat Lapuerta M, Rodríguez-Fernández J, Agudelo JR. Diesel particulate emissions from used cooking oil biodiesel. Biores Technol. 2008;99(4):731–40.CrossRef Lapuerta M, Rodríguez-Fernández J, Agudelo JR. Diesel particulate emissions from used cooking oil biodiesel. Biores Technol. 2008;99(4):731–40.CrossRef
23.
Zurück zum Zitat Nabi MN, Akhter MS, Zaglul Shahadat MM. Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Biores Technol. 2006;97(3):372–8.CrossRef Nabi MN, Akhter MS, Zaglul Shahadat MM. Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Biores Technol. 2006;97(3):372–8.CrossRef
24.
Zurück zum Zitat Canakci M, Van Gerpen JH. Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Transact ASAE. 2003;46(4):937–44. Canakci M, Van Gerpen JH. Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Transact ASAE. 2003;46(4):937–44.
25.
Zurück zum Zitat Zhang Y, Dube MA, McLean D, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Biores Technol. 2003;89(1):1–16.CrossRef Zhang Y, Dube MA, McLean D, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Biores Technol. 2003;89(1):1–16.CrossRef
26.
Zurück zum Zitat Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels. 2012;5(1):1–10. Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels. 2012;5(1):1–10.
27.
Zurück zum Zitat Van Kasteren JMN, Nisworo AP. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recycl. 2007;50(4):442–58.CrossRef Van Kasteren JMN, Nisworo AP. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recycl. 2007;50(4):442–58.CrossRef
28.
Zurück zum Zitat Haas MJ, McAloon AJ, Yee WC, Foglia TA. A process model to estimate biodiesel production costs. Biores Technol. 2006;97(4):671–8.CrossRef Haas MJ, McAloon AJ, Yee WC, Foglia TA. A process model to estimate biodiesel production costs. Biores Technol. 2006;97(4):671–8.CrossRef
29.
Zurück zum Zitat Kerr BJ, Dozier III WA, Bregendahl KC. Nutritional value of crude glycerin for nonruminants. 23rd Annual Carolina Swine Nutrition Conference; November 13 2007; Raleigh, NC; p. 6–18. Kerr BJ, Dozier III WA, Bregendahl KC. Nutritional value of crude glycerin for nonruminants. 23rd Annual Carolina Swine Nutrition Conference; November 13 2007; Raleigh, NC; p. 6–18.
30.
Zurück zum Zitat Glycerine market report. Montmorency: HB International SAS; 2012. Glycerine market report. Montmorency: HB International SAS; 2012.
31.
Zurück zum Zitat Araujo VKWS, Hamacher S, Scavarda LF. Economic assessment of biodiesel production from waste frying oils. Biores Technol. 2010;101(12):4415–22.CrossRef Araujo VKWS, Hamacher S, Scavarda LF. Economic assessment of biodiesel production from waste frying oils. Biores Technol. 2010;101(12):4415–22.CrossRef
32.
Zurück zum Zitat Bowling IM, Ponce-Ortega JM, El-Halwagi MM. Facility location and supply chain optimization for a biorefinery. Industr Engin Chem Res. 2011;50(10):6276–86.CrossRef Bowling IM, Ponce-Ortega JM, El-Halwagi MM. Facility location and supply chain optimization for a biorefinery. Industr Engin Chem Res. 2011;50(10):6276–86.CrossRef
33.
Zurück zum Zitat Mu D, Seager T, Rao PS, Zhao F. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manage. 2010;46(4):565–78.CrossRef Mu D, Seager T, Rao PS, Zhao F. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manage. 2010;46(4):565–78.CrossRef
34.
Zurück zum Zitat Bellomare F, Rokni M. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine. Renew Energy. 2013;55:490–500.CrossRef Bellomare F, Rokni M. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine. Renew Energy. 2013;55:490–500.CrossRef
35.
Zurück zum Zitat Sadhukhan J, Zhao Y, Shah N, Brandon NP. Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems. Chem Engin Sci. 2010;65(6):1942–54.CrossRef Sadhukhan J, Zhao Y, Shah N, Brandon NP. Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems. Chem Engin Sci. 2010;65(6):1942–54.CrossRef
37.
Zurück zum Zitat Willis KP, Osada S, Willerton KLC. Plasma gasification: lessons learned at Eco-Valley WTE facility. 18th Annual North American Waste-to-Energy Conference (NAWTEC18); May 11-13 2010; Orlando, FL: American Society of Mechanical Engineers; p. 133–40. Willis KP, Osada S, Willerton KLC. Plasma gasification: lessons learned at Eco-Valley WTE facility. 18th Annual North American Waste-to-Energy Conference (NAWTEC18); May 11-13 2010; Orlando, FL: American Society of Mechanical Engineers; p. 133–40.
39.
Zurück zum Zitat Au EWK. Sticking with Shek Kwu Chau incinerator as best option. South China Morning Post. 2013 November 5. Au EWK. Sticking with Shek Kwu Chau incinerator as best option. South China Morning Post. 2013 November 5.
41.
Zurück zum Zitat Young GC. Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons: John Wiley & Sons. 2010.CrossRef Young GC. Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons: John Wiley & Sons. 2010.CrossRef
42.
Zurück zum Zitat Attinger S. US cities get serious about sustainability. Int J Innov Sci. 2011;3(1):29–40.CrossRef Attinger S. US cities get serious about sustainability. Int J Innov Sci. 2011;3(1):29–40.CrossRef
43.
Zurück zum Zitat Dubois M. Towards a coherent European approach for taxation of combustible waste. Waste Manage. 2013;33(8):1776–83.CrossRef Dubois M. Towards a coherent European approach for taxation of combustible waste. Waste Manage. 2013;33(8):1776–83.CrossRef
44.
Zurück zum Zitat Milios L. Municipal waste management in Sweden. : European Topic Centre on Sustainable Consumption and Production (ETC/SCP) for the European Environment Agency (EEA); Copenhagen; 2013. Milios L. Municipal waste management in Sweden. : European Topic Centre on Sustainable Consumption and Production (ETC/SCP) for the European Environment Agency (EEA); Copenhagen; 2013.
45.
Zurück zum Zitat Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 2010;89(3):677–84.CrossRef Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel. 2010;89(3):677–84.CrossRef
46.
Zurück zum Zitat Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.CrossRef Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.CrossRef
47.
Zurück zum Zitat Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010;85(2):199–203. Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010;85(2):199–203.
48.
Zurück zum Zitat Kucukvar M, Tatari O. A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy. Energy. 2011;36(11):6352–7.CrossRef Kucukvar M, Tatari O. A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy. Energy. 2011;36(11):6352–7.CrossRef
49.
Zurück zum Zitat Kadam KL. Environmental implications of power generation via coal-microalgae cofiring. Energy. 2002;27(10):905–22.CrossRef Kadam KL. Environmental implications of power generation via coal-microalgae cofiring. Energy. 2002;27(10):905–22.CrossRef
50.
Zurück zum Zitat Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels. 2010;24(6):3639–46.CrossRef Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels. 2010;24(6):3639–46.CrossRef
51.
Zurück zum Zitat Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Indust Engin Chem Res. 2009;49(3):1113–22.CrossRef Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Indust Engin Chem Res. 2009;49(3):1113–22.CrossRef
52.••
Zurück zum Zitat Zhou Y, Schideman L, Yu G, Zhang Y. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci. 2013;6(12):3765–79. This paper described the E 2 -Energy process, a novel wastewater based algal bioenergy system. The process subjects sewage sludge and algae biomass to hydrothermal liquefaction to produce bio-oil, and recycles the resulting CO 2 and nutrients-rich wastewater back to the algae culture to increase biomass productivity. Theoretically, the process is a net producer of energy, which makes algal bioenergy from wastewater energetically feasible, and at the same time, wastewater treatment more sustainable. Zhou Y, Schideman L, Yu G, Zhang Y. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci. 2013;6(12):3765–79. This paper described the E 2 -Energy process, a novel wastewater based algal bioenergy system. The process subjects sewage sludge and algae biomass to hydrothermal liquefaction to produce bio-oil, and recycles the resulting CO 2 and nutrients-rich wastewater back to the algae culture to increase biomass productivity. Theoretically, the process is a net producer of energy, which makes algal bioenergy from wastewater energetically feasible, and at the same time, wastewater treatment more sustainable.
53.
Zurück zum Zitat Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27(4):409–16.CrossRef Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27(4):409–16.CrossRef
54.
Zurück zum Zitat Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores Technol. 2007;98(1):130–4.CrossRef Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores Technol. 2007;98(1):130–4.CrossRef
55.
Zurück zum Zitat Sturm BSM, Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy. 2011;88(10):3499–506.CrossRef Sturm BSM, Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy. 2011;88(10):3499–506.CrossRef
56.
Zurück zum Zitat Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Biores Technol. 2011;102(1):35–42.CrossRef Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Biores Technol. 2011;102(1):35–42.CrossRef
57.
Zurück zum Zitat Shilton AN, Mara DD, Craggs R, Powell N. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds. Water Sci Technol. 2008;58(1):253–8.CrossRef Shilton AN, Mara DD, Craggs R, Powell N. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds. Water Sci Technol. 2008;58(1):253–8.CrossRef
58.
Zurück zum Zitat Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010;44(5):1813–9.CrossRef Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010;44(5):1813–9.CrossRef
59.••
Zurück zum Zitat Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, Hiessl H. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ Sci Technol. 2012;46(21):11505–14. The authors reported the results of mass and energy balances of a wastewater treatment plant incorporating the anaerobic digestion of sewage sludge and algae biomass, and the recycling of flue gas from the anaerobic digestion back to the algae culture. The results proved it possible for algae to improve the energy efficiency of wastewater treatment, making a case for algal bioenergy.CrossRef Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, Hiessl H. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ Sci Technol. 2012;46(21):11505–14. The authors reported the results of mass and energy balances of a wastewater treatment plant incorporating the anaerobic digestion of sewage sludge and algae biomass, and the recycling of flue gas from the anaerobic digestion back to the algae culture. The results proved it possible for algae to improve the energy efficiency of wastewater treatment, making a case for algal bioenergy.CrossRef
60.
Zurück zum Zitat Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Engin. 2009;135(11):1115–222.CrossRef Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Engin. 2009;135(11):1115–222.CrossRef
61.
Zurück zum Zitat Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Biores Technol. 2011;102(8):4945–53.CrossRef Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Biores Technol. 2011;102(8):4945–53.CrossRef
62.
Zurück zum Zitat Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol. 2008;79(5):707–18.CrossRef Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol. 2008;79(5):707–18.CrossRef
63.
Zurück zum Zitat Slade R, Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29–38.CrossRef Slade R, Bauen A. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy. 2013;53:29–38.CrossRef
64.
Zurück zum Zitat Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores Technol. 2010;101(4):1406–13.CrossRef Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores Technol. 2010;101(4):1406–13.CrossRef
65.
Zurück zum Zitat Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels. 2010;24(7):4062–477.CrossRef Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels. 2010;24(7):4062–477.CrossRef
66.
Zurück zum Zitat Morweiser M, Kruse O, Hankamer B, Posten C. Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol. 2010;87(4):1291–301.CrossRef Morweiser M, Kruse O, Hankamer B, Posten C. Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol. 2010;87(4):1291–301.CrossRef
68.
Zurück zum Zitat Zhou Y, Schideman L, Zhang Y. Multi-cycle nutrient reuse: a powerful tool to amplify waste nutrients into maximized algal biofuel production. WEF/IWA Nutrient Removal and Recovery: Trends in Resource Recovery and Use; July 28-31 2013; Vancouver, BC. Zhou Y, Schideman L, Zhang Y. Multi-cycle nutrient reuse: a powerful tool to amplify waste nutrients into maximized algal biofuel production. WEF/IWA Nutrient Removal and Recovery: Trends in Resource Recovery and Use; July 28-31 2013; Vancouver, BC.
69.
Zurück zum Zitat Wallis D. When algae on the exterior is a good thing. The New York Times. April 24 2013. Wallis D. When algae on the exterior is a good thing. The New York Times. April 24 2013.
70.
Zurück zum Zitat Ennesys launches “green building” demo in France. AlgaeIndustryMagazinecom. 2012 November. Ennesys launches “green building” demo in France. AlgaeIndustryMagazinecom. 2012 November.
71.
Zurück zum Zitat Klein A. Gasification: an alternative process for energy recovery and disposal of municipal solid wastes. Columbia: Columbia University; 2002. Klein A. Gasification: an alternative process for energy recovery and disposal of municipal solid wastes. Columbia: Columbia University; 2002.
72.
Zurück zum Zitat Murphy JD, McKeogh E. Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energy. 2004;29(7):1043–57.CrossRef Murphy JD, McKeogh E. Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energy. 2004;29(7):1043–57.CrossRef
73.
Zurück zum Zitat Waste to energy, a technical review of municipal solid waste thermal treatment practices, final report, project no. 1231-10166. Victoria, BC: Stantec Consulting Ltd. for Environmental Quality Branch, Environmental Protection Division, Ministry of Environment; 2011. Waste to energy, a technical review of municipal solid waste thermal treatment practices, final report, project no. 1231-10166. Victoria, BC: Stantec Consulting Ltd. for Environmental Quality Branch, Environmental Protection Division, Ministry of Environment; 2011.
74.
Zurück zum Zitat Tsai WT, Chou YH. An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renew Sustain Energy Rev. 2006;10(5):491–502.CrossRef Tsai WT, Chou YH. An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renew Sustain Energy Rev. 2006;10(5):491–502.CrossRef
75.
Zurück zum Zitat Minutillo M, Perna A, Di Bona D. Modelling and performance analysis of an integrated plasma gasification combined cycle (IPGCC) power plant. Energy Conversion Manage. 2009;50(11):2837–42.CrossRef Minutillo M, Perna A, Di Bona D. Modelling and performance analysis of an integrated plasma gasification combined cycle (IPGCC) power plant. Energy Conversion Manage. 2009;50(11):2837–42.CrossRef
76.
Zurück zum Zitat Morrin S, Lettieri P, Chapman C, Mazzei L. Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manage. 2012;32(4):676–84.CrossRef Morrin S, Lettieri P, Chapman C, Mazzei L. Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manage. 2012;32(4):676–84.CrossRef
77.
Zurück zum Zitat Garcia J, Green BF, Lundquist T, Mujeriego R, Hernández-Mariné M, Oswald WJ. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Biores Technol. 2006;97(14):1709–15.CrossRef Garcia J, Green BF, Lundquist T, Mujeriego R, Hernández-Mariné M, Oswald WJ. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Biores Technol. 2006;97(14):1709–15.CrossRef
78.
Zurück zum Zitat Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J. Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Sci Technol. 1991;23(7–9):1535–41. Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J. Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Sci Technol. 1991;23(7–9):1535–41.
79.
Zurück zum Zitat Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA. Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Engin. 2013;52:143–53.CrossRef Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA. Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Engin. 2013;52:143–53.CrossRef
80.
Zurück zum Zitat Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011;45(11):3351–8.CrossRef Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011;45(11):3351–8.CrossRef
81.
Zurück zum Zitat Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol. 2011;165(1):123–37.CrossRef Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol. 2011;165(1):123–37.CrossRef
82.
Zurück zum Zitat Yuan X, Kumar A, Sahu AK, Ergas SJ. Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Biores Technol. 2011;102(3):3234–9.CrossRef Yuan X, Kumar A, Sahu AK, Ergas SJ. Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Biores Technol. 2011;102(3):3234–9.CrossRef
Metadaten
Titel
Infrastructure Support for Bioenergy Development in Cities
verfasst von
Tze Ling Ng
Publikationsdatum
01.09.2014
Verlag
Springer International Publishing
Erschienen in
Current Sustainable/Renewable Energy Reports / Ausgabe 3/2014
Elektronische ISSN: 2196-3010
DOI
https://doi.org/10.1007/s40518-014-0012-7

Weitere Artikel der Ausgabe 3/2014

Current Sustainable/Renewable Energy Reports 3/2014 Zur Ausgabe

Urban Planning (B Brown Wilson, Section Editor)

Latest Perspectives on Global Renewable Energy Policies

Sustainable and Renewable Fuels (X Cai, Section Editor)

Indirect Land Use Change Debate: What Did We Learn?

Urban Planning (B Brown Wilson, Section Editor)

Social Planning for Energy Transitions

Sustainable and Renewable Fuels (X Cai, Section Editor)

Potential of Bioenergy Production from Microalgae