Skip to main content
Erschienen in: Acta Mechanica 2/2020

27.11.2019 | Original Paper

Inhomogeneous deformation growth of a metal under cyclic loading and its influence on fatigue

verfasst von: Da-Wei Qin, J. Woody Ju, Ke-Shi Zhang, Ze-Shen Li

Erschienen in: Acta Mechanica | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the effects of inhomogeneous material deformation and fatigue caused by meso-mechanical inhomogeneity are investigated. A representative volume element is constructed for pure copper as a material model which features a polycrystalline Voronoi aggregation consisting of a number of crystal grains. The Chaboche model with random parameters is adopted to reflect inhomogeneous cyclic plastic behavior of grains. Key simulations are performed to model the experimental cyclic evolution of strain fatigue under symmetrical tensile–compressive loading. The simulation results show that, although the macroscopic material hysteresis curve keeps stable, the mesoscopic deformations become increasingly inhomogeneous and the statistic differences keep growing. Accordingly, further research on the underlying relation between inhomogeneous deformation and fatigue is conducted, and a systematic methodology to predict the low-cycle fatigue life is revealed.
Literatur
1.
Zurück zum Zitat Asaro, R.J., Rice, J.R.: Strain localizaion in ductile single crystals. J. Mech. Phys. Solids. 25(5), 309–338 (1977)CrossRef Asaro, R.J., Rice, J.R.: Strain localizaion in ductile single crystals. J. Mech. Phys. Solids. 25(5), 309–338 (1977)CrossRef
2.
Zurück zum Zitat Bennett, V.P., McDowell, D.L.: Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int. J. Fatigue 25(1), 27–39 (2003)CrossRef Bennett, V.P., McDowell, D.L.: Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int. J. Fatigue 25(1), 27–39 (2003)CrossRef
3.
Zurück zum Zitat Bochenek, B., Pyrz, R.: Reconstruction methodology for planar and spatial random microstructure. In: New Challenges in Mesomechanics 2002 (2002) Bochenek, B., Pyrz, R.: Reconstruction methodology for planar and spatial random microstructure. In: New Challenges in Mesomechanics 2002 (2002)
4.
Zurück zum Zitat Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)CrossRef Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)CrossRef
5.
Zurück zum Zitat Chan, K.S.: Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 32(9), 1428–1447 (2010)CrossRef Chan, K.S.: Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 32(9), 1428–1447 (2010)CrossRef
6.
Zurück zum Zitat Chan, K.S., Lee, Y.D.: Effects of deformation-induced constraint on high-cycle fatigue in Ti alloys with a duplex microstructure. Metall. Mater. Trans. A 39(7), 1665–1675 (2008)CrossRef Chan, K.S., Lee, Y.D.: Effects of deformation-induced constraint on high-cycle fatigue in Ti alloys with a duplex microstructure. Metall. Mater. Trans. A 39(7), 1665–1675 (2008)CrossRef
7.
Zurück zum Zitat Ghosh, S., Anahid, M.: Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 1: macroscopic anisotropic yield function. Int. J. Plast. 47, 182–201 (2013)CrossRef Ghosh, S., Anahid, M.: Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 1: macroscopic anisotropic yield function. Int. J. Plast. 47, 182–201 (2013)CrossRef
8.
Zurück zum Zitat Hansen, A., Hinrichsen, E.L., Roux, S.: Scale-invariant disorder in fracture and related breakdown phenomena. Phys. Rev. B 43(1), 665 (1991)CrossRef Hansen, A., Hinrichsen, E.L., Roux, S.: Scale-invariant disorder in fracture and related breakdown phenomena. Phys. Rev. B 43(1), 665 (1991)CrossRef
9.
Zurück zum Zitat Hill, R., Rice, J.R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20(6), 401–413 (1972)CrossRef Hill, R., Rice, J.R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20(6), 401–413 (1972)CrossRef
10.
Zurück zum Zitat Huang, Y.: A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Division of Applied Sciences, Harvard University, Report MECH-178 (1991) Huang, Y.: A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Division of Applied Sciences, Harvard University, Report MECH-178 (1991)
11.
Zurück zum Zitat Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A Math. Phys. Sci. 348(1652), 101–127 (1976)MATH Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A Math. Phys. Sci. 348(1652), 101–127 (1976)MATH
12.
Zurück zum Zitat Kalikindi, R.S., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40(3), 537–569 (1992)CrossRef Kalikindi, R.S., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40(3), 537–569 (1992)CrossRef
13.
Zurück zum Zitat Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24(11), 1990–2015 (2008)CrossRef Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., Komanduri, R.: Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24(11), 1990–2015 (2008)CrossRef
14.
Zurück zum Zitat Maniatty, A.M., Dawson, P.R., Lee, Y.S.: A time integration algorithm for elastoviscoplastic cubic crystals applied to modelling polycrystalline deformation. Int. J. Numer. Methods Eng. 35(8), 1565–1588 (2010)CrossRef Maniatty, A.M., Dawson, P.R., Lee, Y.S.: A time integration algorithm for elastoviscoplastic cubic crystals applied to modelling polycrystalline deformation. Int. J. Numer. Methods Eng. 35(8), 1565–1588 (2010)CrossRef
15.
Zurück zum Zitat McDowell, D.L., Dunne, F.P.E.: Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32(9), 1521–1542 (2010)CrossRef McDowell, D.L., Dunne, F.P.E.: Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32(9), 1521–1542 (2010)CrossRef
16.
Zurück zum Zitat Mcgarry, J.P., O’Donnell, B.P., McHugh, P.E., McGarry, J.G.: Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31(3), 421–438 (2004)CrossRef Mcgarry, J.P., O’Donnell, B.P., McHugh, P.E., McGarry, J.G.: Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31(3), 421–438 (2004)CrossRef
17.
Zurück zum Zitat Muszka, K.: Modelling of deformation inhomogeneity in the angular accumulative drawing process–multiscale approach. Mater. Sci. Eng. A 559, 635–642 (2013)CrossRef Muszka, K.: Modelling of deformation inhomogeneity in the angular accumulative drawing process–multiscale approach. Mater. Sci. Eng. A 559, 635–642 (2013)CrossRef
18.
Zurück zum Zitat Needleman, A., Asaro, R.J., Lemonds, J., Peirce, D.: Finite element analysis of crystalline solids. Comput. Methods Appl. Mech. Eng. 52(1), 689–708 (1985)CrossRef Needleman, A., Asaro, R.J., Lemonds, J., Peirce, D.: Finite element analysis of crystalline solids. Comput. Methods Appl. Mech. Eng. 52(1), 689–708 (1985)CrossRef
19.
Zurück zum Zitat Needleman, A., Tvergaard, V.: Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites. J. Appl. Mech. 60(1), 70–76 (1993)CrossRef Needleman, A., Tvergaard, V.: Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites. J. Appl. Mech. 60(1), 70–76 (1993)CrossRef
20.
Zurück zum Zitat Payne, J., Welsh, G., Christ Jr., R.J., Nardiello, J., Papazian, J.M.: Observations of fatigue crack initiation in 7075–T651. Int. J. Fatigue 32(2), 247–255 (2010)CrossRef Payne, J., Welsh, G., Christ Jr., R.J., Nardiello, J., Papazian, J.M.: Observations of fatigue crack initiation in 7075–T651. Int. J. Fatigue 32(2), 247–255 (2010)CrossRef
21.
Zurück zum Zitat Peirce, D., Asaro, R.J., Needleman, A.: Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31(12), 1951–1976 (1983)CrossRef Peirce, D., Asaro, R.J., Needleman, A.: Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31(12), 1951–1976 (1983)CrossRef
22.
Zurück zum Zitat Prakash, A., Lebensohn, R.A.: Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms. Modell. Simul. Mater. Sci. Eng. 17(6), 64010–64016 (2009)CrossRef Prakash, A., Lebensohn, R.A.: Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms. Modell. Simul. Mater. Sci. Eng. 17(6), 64010–64016 (2009)CrossRef
23.
Zurück zum Zitat Sangid, M.D.: The physics of fatigue crack initiation. Int. J. Fatigue 57, 58–72 (2013)CrossRef Sangid, M.D.: The physics of fatigue crack initiation. Int. J. Fatigue 57, 58–72 (2013)CrossRef
24.
Zurück zum Zitat Sarma, G., Zacharia, T.: Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials. J. Mech. Phys. Solids 47(6), 1219–1238 (1999)CrossRef Sarma, G., Zacharia, T.: Integration algorithm for modeling the elasto-viscoplastic response of polycrystalline materials. J. Mech. Phys. Solids 47(6), 1219–1238 (1999)CrossRef
25.
Zurück zum Zitat Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)CrossRef Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)CrossRef
26.
Zurück zum Zitat Sweeney, C.A., Vorster, W., Leen, S.B., Sakurada, E., McHugh, P.E., Dunne, F.P.E.: The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J. Mech. Phys. Solids 61(5), 1224–1240 (2013)MathSciNetCrossRef Sweeney, C.A., Vorster, W., Leen, S.B., Sakurada, E., McHugh, P.E., Dunne, F.P.E.: The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J. Mech. Phys. Solids 61(5), 1224–1240 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Tang, C.: Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 34(2), 249–261 (1997)MathSciNetCrossRef Tang, C.: Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 34(2), 249–261 (1997)MathSciNetCrossRef
28.
Zurück zum Zitat Xia, Z., Zhou, C., Yong, Q., Zhang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)MathSciNetCrossRef Xia, Z., Zhou, C., Yong, Q., Zhang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)MathSciNetCrossRef
29.
Zurück zum Zitat Zhang, K.S., Wu, M.S., Feng, R.: Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plast. 21(4), 801–834 (2005)CrossRef Zhang, K.S., Wu, M.S., Feng, R.: Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plast. 21(4), 801–834 (2005)CrossRef
30.
Zurück zum Zitat Zhang, K., Ju, J.W., Li, Z., Bai, Y.L., Brocks, W.: Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 85, 16–37 (2015)CrossRef Zhang, K., Ju, J.W., Li, Z., Bai, Y.L., Brocks, W.: Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 85, 16–37 (2015)CrossRef
31.
Zurück zum Zitat Zhang, K., Shi, Y., Ju, J.W.: Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal. Mech. Mater. 64, 76–90 (2013)CrossRef Zhang, K., Shi, Y., Ju, J.W.: Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal. Mech. Mater. 64, 76–90 (2013)CrossRef
Metadaten
Titel
Inhomogeneous deformation growth of a metal under cyclic loading and its influence on fatigue
verfasst von
Da-Wei Qin
J. Woody Ju
Ke-Shi Zhang
Ze-Shen Li
Publikationsdatum
27.11.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 2/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02560-2

Weitere Artikel der Ausgabe 2/2020

Acta Mechanica 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.