Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2020

14.11.2019

Initiated chemical vapor deposition of poly(hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces

verfasst von: Büşra Şimşek, Mustafa Karaman

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study demonstrates the synthesis of poly(hexafluorobutyl acrylate) (PHFBA) thin films on textile substrates using initiated chemical vapor deposition (iCVD) method. Owing to its short perfluoroalkyl functional group, PHFBA is a suitable low-surface-energy finish that can be used for hydrophobic functionalization of textile surfaces. During iCVD of PHFBA, the use of initiator helped to achieve deposition rates up to 83 nm/min, which is nearly twice that achieved by PECVD. FTIR and XPS analyses of as-deposited films showed very high retention of carbonyl and perfluoroalkyl functionalities. Polyester and cotton fabrics were made superhydrophobic after conformal coating of PHFBA by iCVD. The decoration of fabric surfaces by SiO2 nanoparticles prior to the iCVD coating helped to create composite structures having dual-scale roughness. The final SiO2-treated and iCVD-PHFBA-coated textile fabrics showed very high water contact angles (> 165°).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Song, J, Rojas, OJ, “Approaching Super-Hydrophobicity from Cellulosic Materials: A Review.” Nord. Pulp Pap. Res. J, 28 216–238 (2013)CrossRef Song, J, Rojas, OJ, “Approaching Super-Hydrophobicity from Cellulosic Materials: A Review.” Nord. Pulp Pap. Res. J, 28 216–238 (2013)CrossRef
2.
Zurück zum Zitat Zhang, M, et al., “Preparation and Characterization of Cotton Fabric with Potential Use in UV Resistance and Oil Reclaim.” Carbohydr. Polym., 137 264–270 (2016)CrossRef Zhang, M, et al., “Preparation and Characterization of Cotton Fabric with Potential Use in UV Resistance and Oil Reclaim.” Carbohydr. Polym., 137 264–270 (2016)CrossRef
3.
Zurück zum Zitat Manakasettharn, S, Taylor, J, Krupenkin, T, “Superhydrophobicity at Micron and Submicron Scale.” In: Andrews, D, Scholes, G, Wiederrecht, G (eds.) Comprehensive Nanoscience and Technology, Vol. 4, pp. 383–411 (2011)CrossRef Manakasettharn, S, Taylor, J, Krupenkin, T, “Superhydrophobicity at Micron and Submicron Scale.” In: Andrews, D, Scholes, G, Wiederrecht, G (eds.) Comprehensive Nanoscience and Technology, Vol. 4, pp. 383–411 (2011)CrossRef
4.
Zurück zum Zitat Bahners, T, Textor, T, Opwis, K, Schollmeyer, E, “Recent Approaches to Highly Hydrophobic Textile Surfaces.” J. Adhes. Sci. Technol., 22 285–309 (2008)CrossRef Bahners, T, Textor, T, Opwis, K, Schollmeyer, E, “Recent Approaches to Highly Hydrophobic Textile Surfaces.” J. Adhes. Sci. Technol., 22 285–309 (2008)CrossRef
5.
Zurück zum Zitat Hoefnagels, H, Wu, D, De With, G, Ming, W, “Biomimetic Superhydrophobic and Highly Oleophobic Cotton Textiles.” Langmuir, 23 13158–13163 (2007)CrossRef Hoefnagels, H, Wu, D, De With, G, Ming, W, “Biomimetic Superhydrophobic and Highly Oleophobic Cotton Textiles.” Langmuir, 23 13158–13163 (2007)CrossRef
6.
Zurück zum Zitat Zhang, M, Wang, C, “Fabrication of Cotton Fabric with Superhydrophobicity and Flame Retardancy.” Carbohydr. Polym., 96 396–402 (2013)CrossRef Zhang, M, Wang, C, “Fabrication of Cotton Fabric with Superhydrophobicity and Flame Retardancy.” Carbohydr. Polym., 96 396–402 (2013)CrossRef
7.
Zurück zum Zitat Xu, L, Zhuang, W, Xu, B, Cai, Z, “Superhydrophobic Cotton Fabrics Prepared by One-Step Water-Based Sol–Gel Coating.” J. Text. Inst., 103 311–319 (2012)CrossRef Xu, L, Zhuang, W, Xu, B, Cai, Z, “Superhydrophobic Cotton Fabrics Prepared by One-Step Water-Based Sol–Gel Coating.” J. Text. Inst., 103 311–319 (2012)CrossRef
8.
Zurück zum Zitat Bose, RK, Heming, AM, Lau, KK, “Microencapsulation of a Crop Protection Compound by Initiated Chemical Vapor Deposition.” Macromol. Rapid Commun., 33 1375–1380 (2012)CrossRef Bose, RK, Heming, AM, Lau, KK, “Microencapsulation of a Crop Protection Compound by Initiated Chemical Vapor Deposition.” Macromol. Rapid Commun., 33 1375–1380 (2012)CrossRef
9.
Zurück zum Zitat Breme, F, Buttstaedt, J, Emig, G, “Coating of Polymers with Titanium-Based Layers by a Novel Plasma-Assisted Chemical Vapor Deposition Process.” Thin Solid Films, 377 755–759 (2000)CrossRef Breme, F, Buttstaedt, J, Emig, G, “Coating of Polymers with Titanium-Based Layers by a Novel Plasma-Assisted Chemical Vapor Deposition Process.” Thin Solid Films, 377 755–759 (2000)CrossRef
10.
Zurück zum Zitat Gürsoy, M, Karaman, M, “Hydrophobic Coating of Expanded Perlite Particles by Plasma Polymerization.” Chem. Eng. J., 284 343–350 (2016)CrossRef Gürsoy, M, Karaman, M, “Hydrophobic Coating of Expanded Perlite Particles by Plasma Polymerization.” Chem. Eng. J., 284 343–350 (2016)CrossRef
11.
Zurück zum Zitat Karaman, M, Çabuk, N, Özyurt, D, Köysüren, Ö, “Self-Supporting Superhydrophobic Thin Polymer Sheets that Mimic the Nature’s Petal Effect.” Appl. Surf. Sci., 259 542–546 (2012)CrossRef Karaman, M, Çabuk, N, Özyurt, D, Köysüren, Ö, “Self-Supporting Superhydrophobic Thin Polymer Sheets that Mimic the Nature’s Petal Effect.” Appl. Surf. Sci., 259 542–546 (2012)CrossRef
12.
Zurück zum Zitat Bakker, R, et al., “Heat Transfer Model of an iCVD Reactor.” Thin Solid Films, 517 3555–3558 (2009)CrossRef Bakker, R, et al., “Heat Transfer Model of an iCVD Reactor.” Thin Solid Films, 517 3555–3558 (2009)CrossRef
13.
Zurück zum Zitat Trujillo, NJ, Baxamusa, S, Gleason, KK, “Grafted Polymeric Nanostructures Patterned Bottom–Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD).” Thin Solid Films, 517 3615–3618 (2009)CrossRef Trujillo, NJ, Baxamusa, S, Gleason, KK, “Grafted Polymeric Nanostructures Patterned Bottom–Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD).” Thin Solid Films, 517 3615–3618 (2009)CrossRef
14.
Zurück zum Zitat Rezaei, S, Manoucheri, I, Moradian, R, Pourabbas, B, “One-Step Chemical Vapor Deposition and Modification of Silica Nanoparticles at the Lowest Possible Temperature and Superhydrophobic Surface Fabrication.” Chem. Eng. J., 252 11–16 (2014)CrossRef Rezaei, S, Manoucheri, I, Moradian, R, Pourabbas, B, “One-Step Chemical Vapor Deposition and Modification of Silica Nanoparticles at the Lowest Possible Temperature and Superhydrophobic Surface Fabrication.” Chem. Eng. J., 252 11–16 (2014)CrossRef
15.
Zurück zum Zitat Ma, M, Mao, Y, Gupta, M, Gleason, KK, Rutledge, GC, “Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition.” Macromolecules, 38 9742–9748 (2005)CrossRef Ma, M, Mao, Y, Gupta, M, Gleason, KK, Rutledge, GC, “Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition.” Macromolecules, 38 9742–9748 (2005)CrossRef
16.
Zurück zum Zitat Yu, M, Gu, G, Meng, W-D, Qing, F-L, “Superhydrophobic Cotton Fabric Coating Based on a Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent.” Appl. Surf. Sci., 253 3669–3673 (2007)CrossRef Yu, M, Gu, G, Meng, W-D, Qing, F-L, “Superhydrophobic Cotton Fabric Coating Based on a Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent.” Appl. Surf. Sci., 253 3669–3673 (2007)CrossRef
17.
Zurück zum Zitat Graham, P, Stone, M, Thorpe, A, Nevell, TG, Tsibouklis, J, “Fluoropolymers with Very Low Surface Energy Characteristics.” J. Fluor. Chem., 104 29–36 (2000)CrossRef Graham, P, Stone, M, Thorpe, A, Nevell, TG, Tsibouklis, J, “Fluoropolymers with Very Low Surface Energy Characteristics.” J. Fluor. Chem., 104 29–36 (2000)CrossRef
18.
Zurück zum Zitat Di Mundo, R, Bottiglione, F, Palumbo, F, Notarnicola, M, Carbone, G, “Filamentary Superhydrophobic Teflon Surfaces: Moderate Apparent Contact Angle but Superior Air-Retaining Properties.” J. Colloid Interface Sci., 482 175–182 (2016)CrossRef Di Mundo, R, Bottiglione, F, Palumbo, F, Notarnicola, M, Carbone, G, “Filamentary Superhydrophobic Teflon Surfaces: Moderate Apparent Contact Angle but Superior Air-Retaining Properties.” J. Colloid Interface Sci., 482 175–182 (2016)CrossRef
19.
Zurück zum Zitat Blum, A, et al., “The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs).” Environ. Health Perspect., 123 A107–A111 (2015)CrossRef Blum, A, et al., “The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs).” Environ. Health Perspect., 123 A107–A111 (2015)CrossRef
20.
Zurück zum Zitat Bowman, JS, “Fluorotechnology is Critical to Modern Life: The FluoroCouncil Counterpoint to the Madrid Statement.” Environ. Health Perspect., 123 A112–A113 (2015) Bowman, JS, “Fluorotechnology is Critical to Modern Life: The FluoroCouncil Counterpoint to the Madrid Statement.” Environ. Health Perspect., 123 A112–A113 (2015)
21.
Zurück zum Zitat Soto, D, Ugur, A, Farnham, TA, Gleason, KK, Varanasi, KK, “Short-Fluorinated iCVD Coatings for Nonwetting Fabrics.” Adv. Funct. Mater., 28 1707355 (2018)CrossRef Soto, D, Ugur, A, Farnham, TA, Gleason, KK, Varanasi, KK, “Short-Fluorinated iCVD Coatings for Nonwetting Fabrics.” Adv. Funct. Mater., 28 1707355 (2018)CrossRef
22.
Zurück zum Zitat Karaman, M, Yenice, E, “Plasma Enhanced Chemical Vapor Deposition of Poly(2,2,3,4,4,4-hexafluorobutyl acrylate) Thin Films.” Chem. Vap. Depos., 21 188–195 (2015)CrossRef Karaman, M, Yenice, E, “Plasma Enhanced Chemical Vapor Deposition of Poly(2,2,3,4,4,4-hexafluorobutyl acrylate) Thin Films.” Chem. Vap. Depos., 21 188–195 (2015)CrossRef
23.
Zurück zum Zitat Stöber, W, Fink, A, Bohn, E, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range.” J. Colloid Interface Sci., 26 62–69 (1968)CrossRef Stöber, W, Fink, A, Bohn, E, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range.” J. Colloid Interface Sci., 26 62–69 (1968)CrossRef
24.
Zurück zum Zitat Hejda, F, Solar, P, Kousal, J, “Surface Free Energy Determination by Contact Angle Measurements—A Comparison of Various Approaches.” WDS, 25–30 (2010) Hejda, F, Solar, P, Kousal, J, “Surface Free Energy Determination by Contact Angle Measurements—A Comparison of Various Approaches.” WDS, 25–30 (2010)
25.
Zurück zum Zitat Asatekin, A, et al., “Designing Polymer Surfaces via Vapor Deposition.” Mater. Today, 13 26–33 (2010)CrossRef Asatekin, A, et al., “Designing Polymer Surfaces via Vapor Deposition.” Mater. Today, 13 26–33 (2010)CrossRef
26.
Zurück zum Zitat Gürsoy, M, Karaman, M, Surface Treatments for Biological, Chemical and Physical Applications. Wiley, New York (2017)CrossRef Gürsoy, M, Karaman, M, Surface Treatments for Biological, Chemical and Physical Applications. Wiley, New York (2017)CrossRef
27.
Zurück zum Zitat Lau, KK, Gleason, KK, “Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates): An Experimental Study.” Macromolecules, 39 3688–3694 (2006)CrossRef Lau, KK, Gleason, KK, “Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates): An Experimental Study.” Macromolecules, 39 3688–3694 (2006)CrossRef
28.
Zurück zum Zitat Yu, M, et al., “Positive Effect of Polymeric Silane-Based Water Repellent Agents on the Durability of Superhydrophobic Fabrics.” Appl. Surf. Sci., 450 492–501 (2018)CrossRef Yu, M, et al., “Positive Effect of Polymeric Silane-Based Water Repellent Agents on the Durability of Superhydrophobic Fabrics.” Appl. Surf. Sci., 450 492–501 (2018)CrossRef
29.
Zurück zum Zitat Zhou, H, et al., “Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating.” Adv. Mater., 24 2409–2412 (2012)CrossRef Zhou, H, et al., “Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating.” Adv. Mater., 24 2409–2412 (2012)CrossRef
30.
Zurück zum Zitat Hamadi, F, Latrache, H, Zekraoui, M, Ellouali, M, Bengourram, J, “Effect of pH on Surface Energy of Glass and Teflon and Theoretical Prediction of Staphylococcus aureus Adhesion.” Mater. Sci. Eng. C, 29 1302–1305 (2009)CrossRef Hamadi, F, Latrache, H, Zekraoui, M, Ellouali, M, Bengourram, J, “Effect of pH on Surface Energy of Glass and Teflon and Theoretical Prediction of Staphylococcus aureus Adhesion.” Mater. Sci. Eng. C, 29 1302–1305 (2009)CrossRef
Metadaten
Titel
Initiated chemical vapor deposition of poly(hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces
verfasst von
Büşra Şimşek
Mustafa Karaman
Publikationsdatum
14.11.2019
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2020
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-019-00282-7

Weitere Artikel der Ausgabe 2/2020

Journal of Coatings Technology and Research 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.