Skip to main content

2020 | OriginalPaper | Buchkapitel

17. Injectable Gels for Dental and Craniofacial Applications

verfasst von : Mohamed S. Ibrahim, Noha A. El-Wassefy, Dina S. Farahat

Erschienen in: Applications of Biomedical Engineering in Dentistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of injectable scaffolds is considered a promising approach in craniofacial tissue regeneration, as they can be introduced with minimally invasive surgery, thus reducing the risk of surgery complications and improving postoperative recovery. In this chapter, comprehensive descriptions of chemically and physically cross-linked hydrogels that can be used as injectable scaffolds for dental and craniofacial application are presented. Nanocomposite hydrogels, in which nano-sized particles may serve as reinforcing agents and impart functionality to the hydrogels, are also discussed. Special attention is given to peptide amphiphiles which can self-assemble into supramolecular configuration mimicking the extracellular matrix (ECM) structure. Finally, injectable microspheres and different techniques of fabrication are discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14, 88–95.CrossRef O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14, 88–95.CrossRef
2.
Zurück zum Zitat Guyot, C., & Lerouge, S. (2018). Can we achieve the perfect injectable scaffold for cell therapy? Future Science OA, 4, FSO284.CrossRef Guyot, C., & Lerouge, S. (2018). Can we achieve the perfect injectable scaffold for cell therapy? Future Science OA, 4, FSO284.CrossRef
3.
Zurück zum Zitat Hou, Q., De Bank, P. A., & Shakesheff, K. M. (2004). Injectable scaffolds for tissue regeneration. ChemInform, Journal of Materials Chemistry, 14, 1915–1923. Hou, Q., De Bank, P. A., & Shakesheff, K. M. (2004). Injectable scaffolds for tissue regeneration. ChemInform, Journal of Materials Chemistry, 14, 1915–1923.
4.
Zurück zum Zitat Kretlow, J. D., Klouda, L., & Mikos, A. G. (2007). Injectable matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 59, 263–273.CrossRef Kretlow, J. D., Klouda, L., & Mikos, A. G. (2007). Injectable matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 59, 263–273.CrossRef
5.
Zurück zum Zitat Chang, B., Ahuja, N., Ma, C., & Liu, X. (2017). Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Materials Science & Engineering R: Reports, 111, 1–26.CrossRef Chang, B., Ahuja, N., Ma, C., & Liu, X. (2017). Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Materials Science & Engineering R: Reports, 111, 1–26.CrossRef
6.
Zurück zum Zitat Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337–4351.CrossRef Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24, 4337–4351.CrossRef
7.
Zurück zum Zitat Taylor, P. M. (2007). Biological matrices and bionanotechnology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1313–1320.CrossRef Taylor, P. M. (2007). Biological matrices and bionanotechnology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1313–1320.CrossRef
8.
Zurück zum Zitat Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428, 487–492.CrossRef Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428, 487–492.CrossRef
9.
Zurück zum Zitat Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2012). Biomaterials science: An introduction to materials in medicine. Amsterdam: Academic Press. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2012). Biomaterials science: An introduction to materials in medicine. Amsterdam: Academic Press.
10.
Zurück zum Zitat Silva, S. S., Mano, J. F., & Reis, R. L. (2010). Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 30, 200–221.CrossRef Silva, S. S., Mano, J. F., & Reis, R. L. (2010). Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 30, 200–221.CrossRef
11.
Zurück zum Zitat Tan, H., Wan, L., Wu, J., & Gao, C. (2008). Microscale control over collagen gradient on poly(L-lactide) membrane surface for manipulating chondrocyte distribution. Colloids and Surfaces. B, Biointerfaces, 67, 210–215.CrossRef Tan, H., Wan, L., Wu, J., & Gao, C. (2008). Microscale control over collagen gradient on poly(L-lactide) membrane surface for manipulating chondrocyte distribution. Colloids and Surfaces. B, Biointerfaces, 67, 210–215.CrossRef
12.
Zurück zum Zitat Guarino, V., Gloria, A., De Santis, R., & Ambrosio, L. (2010). Composite hydrogels for scaffold design, tissue engineering, and prostheses. In Biomedical applications of hydrogels handbook (pp. 227–245). New York: Springer.CrossRef Guarino, V., Gloria, A., De Santis, R., & Ambrosio, L. (2010). Composite hydrogels for scaffold design, tissue engineering, and prostheses. In Biomedical applications of hydrogels handbook (pp. 227–245). New York: Springer.CrossRef
13.
Zurück zum Zitat Mueller, S. M., et al. (1999). Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials, 20, 701–709.CrossRef Mueller, S. M., et al. (1999). Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials, 20, 701–709.CrossRef
14.
Zurück zum Zitat Tan, H., Huang, D., Lao, L., & Gao, C. (2009). RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91, 228–238.CrossRef Tan, H., Huang, D., Lao, L., & Gao, C. (2009). RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 91, 228–238.CrossRef
15.
Zurück zum Zitat Sumita, Y., et al. (2006). Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials, 27, 3238–3248.CrossRef Sumita, Y., et al. (2006). Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials, 27, 3238–3248.CrossRef
16.
Zurück zum Zitat Zhang, W., et al. (2006). The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials, 27, 5658–5668.CrossRef Zhang, W., et al. (2006). The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials, 27, 5658–5668.CrossRef
17.
Zurück zum Zitat Khor, E. (2010). Medical applications of chitin and chitosan. In Chitin, chitosan, oligosaccharides and their derivatives (pp. 405–413). Boca Raton: CRC Press.CrossRef Khor, E. (2010). Medical applications of chitin and chitosan. In Chitin, chitosan, oligosaccharides and their derivatives (pp. 405–413). Boca Raton: CRC Press.CrossRef
18.
Zurück zum Zitat Qasim, S., et al. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 19, 407.CrossRef Qasim, S., et al. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 19, 407.CrossRef
19.
Zurück zum Zitat Hao, T., et al. (2010). The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage, 18, 257–265.CrossRef Hao, T., et al. (2010). The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage, 18, 257–265.CrossRef
20.
Zurück zum Zitat Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506.CrossRef Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506.CrossRef
21.
Zurück zum Zitat Zhang, Y., et al. (2006). Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering. Biochemical and Biophysical Research Communications, 344, 362–369.CrossRef Zhang, Y., et al. (2006). Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering. Biochemical and Biophysical Research Communications, 344, 362–369.CrossRef
22.
Zurück zum Zitat Kogan, G., Soltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29, 17–25.CrossRef Kogan, G., Soltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29, 17–25.CrossRef
23.
Zurück zum Zitat Fraser, J. R. E., & Laurent, T. C. (2007). Turnover and metabolism of hyaluronan. In Novartis Foundation Symposia (pp. 41–59). Chichester: Wiley. Fraser, J. R. E., & Laurent, T. C. (2007). Turnover and metabolism of hyaluronan. In Novartis Foundation Symposia (pp. 41–59). Chichester: Wiley.
24.
Zurück zum Zitat Inuyama, Y., et al. (2010). Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 92B, 120–128.CrossRef Inuyama, Y., et al. (2010). Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 92B, 120–128.CrossRef
25.
Zurück zum Zitat Chang, C.-H., et al. (2006). Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials, 27, 1876–1888.CrossRef Chang, C.-H., et al. (2006). Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials, 27, 1876–1888.CrossRef
26.
Zurück zum Zitat Seal, B. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science & Engineering R: Reports, 34, 147–230.CrossRef Seal, B. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science & Engineering R: Reports, 34, 147–230.CrossRef
27.
Zurück zum Zitat Sun, J., & Tan, H. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials, 6, 1285–1309.CrossRef Sun, J., & Tan, H. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials, 6, 1285–1309.CrossRef
28.
Zurück zum Zitat Boontheekul, T., Kong, H.-J., & Mooney, D. J. (2005). Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 26, 2455–2465.CrossRef Boontheekul, T., Kong, H.-J., & Mooney, D. J. (2005). Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 26, 2455–2465.CrossRef
29.
Zurück zum Zitat Kang, E., et al. (2012). Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Advanced Materials, 24, 4271–4277.CrossRef Kang, E., et al. (2012). Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Advanced Materials, 24, 4271–4277.CrossRef
30.
Zurück zum Zitat Kumabe, S., et al. (2006). Human dental pulp cell culture and cell transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 82, 147–155.CrossRef Kumabe, S., et al. (2006). Human dental pulp cell culture and cell transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 82, 147–155.CrossRef
31.
Zurück zum Zitat Fujiwara, S., Kumabe, S., & Iwai, Y. (2006). Isolated rat dental pulp cell culture and transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 83, 15–24.CrossRef Fujiwara, S., Kumabe, S., & Iwai, Y. (2006). Isolated rat dental pulp cell culture and transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica, 83, 15–24.CrossRef
32.
Zurück zum Zitat Nguyen, M. K., & Lee, D. S. (2010). Injectable biodegradable hydrogels. Macromolecular Bioscience, 10, 563–579.CrossRef Nguyen, M. K., & Lee, D. S. (2010). Injectable biodegradable hydrogels. Macromolecular Bioscience, 10, 563–579.CrossRef
33.
Zurück zum Zitat Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41, 2193–2221.CrossRef Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41, 2193–2221.CrossRef
34.
Zurück zum Zitat Yu, L., & Ding, J. (2008). Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 37, 1473–1481.CrossRef Yu, L., & Ding, J. (2008). Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 37, 1473–1481.CrossRef
35.
Zurück zum Zitat Bidarra, S. J., Barrias, C. C., & Granja, P. L. (2014). Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomaterialia, 10, 1646–1662.CrossRef Bidarra, S. J., Barrias, C. C., & Granja, P. L. (2014). Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomaterialia, 10, 1646–1662.CrossRef
36.
Zurück zum Zitat Yang, J.-A., Yeom, J., Hwang, B. W., Hoffman, A. S., & Hahn, S. K. (2014). In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science, 39, 1973–1986.CrossRef Yang, J.-A., Yeom, J., Hwang, B. W., Hoffman, A. S., & Hahn, S. K. (2014). In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science, 39, 1973–1986.CrossRef
37.
Zurück zum Zitat Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267.CrossRef Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267.CrossRef
38.
Zurück zum Zitat Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–4314.CrossRef Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–4314.CrossRef
39.
Zurück zum Zitat Nguyen, Q. V., Huynh, D. P., Park, J. H., & Lee, D. S. (2015). Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. European Polymer Journal, 72, 602–619.CrossRef Nguyen, Q. V., Huynh, D. P., Park, J. H., & Lee, D. S. (2015). Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. European Polymer Journal, 72, 602–619.CrossRef
40.
Zurück zum Zitat Nicodemus, G. D., Villanueva, I., & Bryant, S. J. (2007). Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research. Part A, 83, 323–331.CrossRef Nicodemus, G. D., Villanueva, I., & Bryant, S. J. (2007). Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research. Part A, 83, 323–331.CrossRef
41.
Zurück zum Zitat Davis, K. A., Burdick, J. A., & Anseth, K. S. (2003). Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials, 24, 2485–2495.CrossRef Davis, K. A., Burdick, J. A., & Anseth, K. S. (2003). Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials, 24, 2485–2495.CrossRef
42.
Zurück zum Zitat Thirumurugan, P., Matosiuk, D., & Jozwiak, K. (2013). Click chemistry for drug development and diverse chemical–biology applications. Chemical Reviews, 113, 4905–4979.CrossRef Thirumurugan, P., Matosiuk, D., & Jozwiak, K. (2013). Click chemistry for drug development and diverse chemical–biology applications. Chemical Reviews, 113, 4905–4979.CrossRef
43.
Zurück zum Zitat Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie (International Ed. in English), 40, 2004–2021.CrossRef Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie (International Ed. in English), 40, 2004–2021.CrossRef
44.
Zurück zum Zitat Nandivada, H., Jiang, X., & Lahann, J. (2007). Click chemistry: Versatility and control in the hands of materials scientists. Advanced Materials, 19, 2197–2208.CrossRef Nandivada, H., Jiang, X., & Lahann, J. (2007). Click chemistry: Versatility and control in the hands of materials scientists. Advanced Materials, 19, 2197–2208.CrossRef
45.
Zurück zum Zitat Park, S. H., et al. (2017). BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Scientific Reports, 7, 6603.CrossRef Park, S. H., et al. (2017). BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Scientific Reports, 7, 6603.CrossRef
46.
Zurück zum Zitat Mather, B. D., Viswanathan, K., Miller, K. M., & Long, T. E. (2006). Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 31, 487–531.CrossRef Mather, B. D., Viswanathan, K., Miller, K. M., & Long, T. E. (2006). Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 31, 487–531.CrossRef
47.
Zurück zum Zitat Li, R., et al. (2017). Synthesis of in-situ formable hydrogels with collagen and hyaluronan through facile Michael addition. Materials Science & Engineering. C, Materials for Biological Applications, 77, 1035–1043.CrossRef Li, R., et al. (2017). Synthesis of in-situ formable hydrogels with collagen and hyaluronan through facile Michael addition. Materials Science & Engineering. C, Materials for Biological Applications, 77, 1035–1043.CrossRef
48.
Zurück zum Zitat Liu, M., et al. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5, 17014.CrossRef Liu, M., et al. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5, 17014.CrossRef
49.
Zurück zum Zitat Teixeira, L. S. M., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33, 1281–1290.CrossRef Teixeira, L. S. M., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33, 1281–1290.CrossRef
50.
Zurück zum Zitat Sperinde, J. J., & Griffith, L. G. (2000). Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules, 33, 5476–5480.CrossRef Sperinde, J. J., & Griffith, L. G. (2000). Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules, 33, 5476–5480.CrossRef
51.
Zurück zum Zitat Parhi, R. (2017). Cross-linked hydrogel for pharmaceutical applications: A review. Advanced Pharmaceutical Bulletin, 7, 515–530.CrossRef Parhi, R. (2017). Cross-linked hydrogel for pharmaceutical applications: A review. Advanced Pharmaceutical Bulletin, 7, 515–530.CrossRef
52.
Zurück zum Zitat Xin, Y., & Yuan, J. (2012). Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polymer Chemistry, 3, 3045–3055.CrossRef Xin, Y., & Yuan, J. (2012). Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polymer Chemistry, 3, 3045–3055.CrossRef
53.
Zurück zum Zitat Hoffmann, B., et al. (2009). Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue. Journal of Materials Science. Materials in Medicine, 20, 2001–2009.CrossRef Hoffmann, B., et al. (2009). Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue. Journal of Materials Science. Materials in Medicine, 20, 2001–2009.CrossRef
54.
Zurück zum Zitat Wu, Y., et al. (2017). A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Frontiers of Materials Science, 11, 215–222.CrossRef Wu, Y., et al. (2017). A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Frontiers of Materials Science, 11, 215–222.CrossRef
55.
Zurück zum Zitat Klouda, L. (2015). Thermoresponsive hydrogels in biomedical applications: A seven-year update. European Journal of Pharmaceutics and Biopharmaceutics, 97, 338–349.CrossRef Klouda, L. (2015). Thermoresponsive hydrogels in biomedical applications: A seven-year update. European Journal of Pharmaceutics and Biopharmaceutics, 97, 338–349.CrossRef
56.
Zurück zum Zitat Boustta, M., Colombo, P.-E., Lenglet, S., Poujol, S., & Vert, M. (2014). Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. Journal of Controlled Release, 174, 1–6.CrossRef Boustta, M., Colombo, P.-E., Lenglet, S., Poujol, S., & Vert, M. (2014). Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. Journal of Controlled Release, 174, 1–6.CrossRef
57.
Zurück zum Zitat Haq, M. A., Su, Y., & Wang, D. (2017). Mechanical properties of PNIPAM based hydrogels: A review. Materials Science & Engineering. C, Materials for Biological Applications, 70, 842–855.CrossRef Haq, M. A., Su, Y., & Wang, D. (2017). Mechanical properties of PNIPAM based hydrogels: A review. Materials Science & Engineering. C, Materials for Biological Applications, 70, 842–855.CrossRef
58.
Zurück zum Zitat Jain, K., Vedarajan, R., Watanabe, M., Ishikiriyama, M., & Matsumi, N. (2015). Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers. Polymer Chemistry, 6, 6819–6825.CrossRef Jain, K., Vedarajan, R., Watanabe, M., Ishikiriyama, M., & Matsumi, N. (2015). Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers. Polymer Chemistry, 6, 6819–6825.CrossRef
59.
Zurück zum Zitat Xie, J., Li, A., & Li, J. (2017). Advances in pH-sensitive polymers for smart insulin delivery. Macromolecular Rapid Communications, 38, 1700413.MathSciNetCrossRef Xie, J., Li, A., & Li, J. (2017). Advances in pH-sensitive polymers for smart insulin delivery. Macromolecular Rapid Communications, 38, 1700413.MathSciNetCrossRef
60.
Zurück zum Zitat Rizwan, M., et al. (2017). pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers, 9, 137.CrossRef Rizwan, M., et al. (2017). pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers, 9, 137.CrossRef
61.
Zurück zum Zitat Liu, Y.-Y., et al. (2006). pH-responsive amphiphilic hydrogel networks with IPN structure: A strategy for controlled drug release. International Journal of Pharmaceutics, 308, 205–209.CrossRef Liu, Y.-Y., et al. (2006). pH-responsive amphiphilic hydrogel networks with IPN structure: A strategy for controlled drug release. International Journal of Pharmaceutics, 308, 205–209.CrossRef
62.
Zurück zum Zitat Wang, K., Fu, Q., Chen, X., Gao, Y., & Dong, K. (2012). Preparation and characterization of pH-sensitive hydrogel for drug delivery system. RSC Advances, 2, 7772–7780.CrossRef Wang, K., Fu, Q., Chen, X., Gao, Y., & Dong, K. (2012). Preparation and characterization of pH-sensitive hydrogel for drug delivery system. RSC Advances, 2, 7772–7780.CrossRef
63.
Zurück zum Zitat Draget, K. I., Skjåk-Braek, G., & Smidsrød, O. (1997). Alginate based new materials. International Journal of Biological Macromolecules, 21, 47–55.CrossRef Draget, K. I., Skjåk-Braek, G., & Smidsrød, O. (1997). Alginate based new materials. International Journal of Biological Macromolecules, 21, 47–55.CrossRef
64.
Zurück zum Zitat Russo, R., Malinconico, M., & Santagata, G. (2007). Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules, 8, 3193–3197.CrossRef Russo, R., Malinconico, M., & Santagata, G. (2007). Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules, 8, 3193–3197.CrossRef
65.
Zurück zum Zitat Donati, I., Asaro, F., & Paoletti, S. (2009). Experimental evidence of counterion affinity in alginates: The case of nongelling ion Mg2+. The Journal of Physical Chemistry. B, 113, 12877–12886.CrossRef Donati, I., Asaro, F., & Paoletti, S. (2009). Experimental evidence of counterion affinity in alginates: The case of nongelling ion Mg2+. The Journal of Physical Chemistry. B, 113, 12877–12886.CrossRef
66.
Zurück zum Zitat Sun, J.-Y., et al. (2012). Highly stretchable and tough hydrogels. Nature, 489, 133–136.CrossRef Sun, J.-Y., et al. (2012). Highly stretchable and tough hydrogels. Nature, 489, 133–136.CrossRef
67.
Zurück zum Zitat Wang, M. S., Childs, R. F., & Chang, P. L. (2005). A novel method to enhance the stability of alginate-poly-L-lysine-alginate microcapsules. Journal of Biomaterials Science. Polymer Edition, 16, 91–113. Wang, M. S., Childs, R. F., & Chang, P. L. (2005). A novel method to enhance the stability of alginate-poly-L-lysine-alginate microcapsules. Journal of Biomaterials Science. Polymer Edition, 16, 91–113.
68.
Zurück zum Zitat Song, F., Li, X., Wang, Q., Liao, L., & Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of Biomedical Nanotechnology, 11, 40–52.CrossRef Song, F., Li, X., Wang, Q., Liao, L., & Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of Biomedical Nanotechnology, 11, 40–52.CrossRef
69.
Zurück zum Zitat Gaharwar, A. K., Peppas, N. A., & Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 111, 441–453.CrossRef Gaharwar, A. K., Peppas, N. A., & Khademhosseini, A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 111, 441–453.CrossRef
70.
Zurück zum Zitat Nejadnik, M. R., et al. (2014). Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials, 35, 6918–6929.CrossRef Nejadnik, M. R., et al. (2014). Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials, 35, 6918–6929.CrossRef
71.
Zurück zum Zitat Martínez-Sanz, E., et al. (2012). Minimally invasive mandibular bone augmentation using injectable hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 6, s15–s23.CrossRef Martínez-Sanz, E., et al. (2012). Minimally invasive mandibular bone augmentation using injectable hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 6, s15–s23.CrossRef
72.
Zurück zum Zitat Gaharwar, A. K., Rivera, C. P., Wu, C.-J., & Schmidt, G. (2011). Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia, 7, 4139–4148.CrossRef Gaharwar, A. K., Rivera, C. P., Wu, C.-J., & Schmidt, G. (2011). Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia, 7, 4139–4148.CrossRef
73.
Zurück zum Zitat Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2011). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6, 13–22.CrossRef Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2011). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6, 13–22.CrossRef
74.
Zurück zum Zitat Thomas, D., Gaspar, D., & Sorushanova, A. (2016). Scaffold and scaffold-free self-assembled systems in regenerative medicine. Biotechnology, 113, 1155–1163. Thomas, D., Gaspar, D., & Sorushanova, A. (2016). Scaffold and scaffold-free self-assembled systems in regenerative medicine. Biotechnology, 113, 1155–1163.
75.
Zurück zum Zitat Matson, J. B., & Stupp, S. I. (2012). Self-assembling peptide scaffolds for regenerative medicine. Chemical Communications, 48, 26–33.CrossRef Matson, J. B., & Stupp, S. I. (2012). Self-assembling peptide scaffolds for regenerative medicine. Chemical Communications, 48, 26–33.CrossRef
76.
Zurück zum Zitat Rosa, V., Zhang, Z., Grande, R. H. M., & Nör, J. E. (2013). Dental pulp tissue engineering in full-length human root canals. Journal of Dental Research, 92, 970–975.CrossRef Rosa, V., Zhang, Z., Grande, R. H. M., & Nör, J. E. (2013). Dental pulp tissue engineering in full-length human root canals. Journal of Dental Research, 92, 970–975.CrossRef
77.
Zurück zum Zitat Cavalcanti, B. N., Zeitlin, B. D., & Nör, J. E. (2013). A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials, 29, 97–102.CrossRef Cavalcanti, B. N., Zeitlin, B. D., & Nör, J. E. (2013). A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials, 29, 97–102.CrossRef
78.
Zurück zum Zitat Galler, K. M., et al. (2008). Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Engineering. Part A, 14, 2051–2058.CrossRef Galler, K. M., et al. (2008). Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells. Tissue Engineering. Part A, 14, 2051–2058.CrossRef
79.
Zurück zum Zitat Gupta, V., Khan, Y., Berkland, C. J., Laurencin, C. T., & Detamore, M. S. (2017). Microsphere-based scaffolds in regenerative engineering. Annual Review of Biomedical Engineering, 19, 135–161.CrossRef Gupta, V., Khan, Y., Berkland, C. J., Laurencin, C. T., & Detamore, M. S. (2017). Microsphere-based scaffolds in regenerative engineering. Annual Review of Biomedical Engineering, 19, 135–161.CrossRef
80.
Zurück zum Zitat Hossain, K., Patel, U., & Ahmed, I. (2015). Development of microspheres for biomedical applications: A review. Progress in Biomaterials, 4, 1–19.CrossRef Hossain, K., Patel, U., & Ahmed, I. (2015). Development of microspheres for biomedical applications: A review. Progress in Biomaterials, 4, 1–19.CrossRef
81.
Zurück zum Zitat Leong, W., & Wang, D. A. (2015). Cell-laden polymeric microspheres for biomedical applications. Trends in Biotechnology, 33, 653–666.CrossRef Leong, W., & Wang, D. A. (2015). Cell-laden polymeric microspheres for biomedical applications. Trends in Biotechnology, 33, 653–666.CrossRef
82.
Zurück zum Zitat Wang, H., Leeuwenburgh, S., & Li, Y. (2011). The use of micro-and nanospheres as functional components for bone tissue regeneration. Engineering Part B: Reviews, 18, 24–39.CrossRef Wang, H., Leeuwenburgh, S., & Li, Y. (2011). The use of micro-and nanospheres as functional components for bone tissue regeneration. Engineering Part B: Reviews, 18, 24–39.CrossRef
83.
Zurück zum Zitat Hernández, R. M., Orive, G., Murua, A., & Pedraz, J. L. (2010). Microcapsules and microcarriers for in situ cell delivery. Advanced Drug Delivery Reviews, 62, 711–730.CrossRef Hernández, R. M., Orive, G., Murua, A., & Pedraz, J. L. (2010). Microcapsules and microcarriers for in situ cell delivery. Advanced Drug Delivery Reviews, 62, 711–730.CrossRef
84.
Zurück zum Zitat Rokstad, A., Lacík, I., de Vos, P., & Strand, B. L. (2014). Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Advanced Drug Delivery Reviews, 67, 111–130.CrossRef Rokstad, A., Lacík, I., de Vos, P., & Strand, B. L. (2014). Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Advanced Drug Delivery Reviews, 67, 111–130.CrossRef
85.
Zurück zum Zitat Tang, G., et al. (2012). Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as Porogen. Journal of Biomaterials Science. Polymer Edition, 23, 2241–2257. Tang, G., et al. (2012). Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as Porogen. Journal of Biomaterials Science. Polymer Edition, 23, 2241–2257.
86.
Zurück zum Zitat Matsuno, T., Hashimoto, Y., Adachi, S., & Omata, K. (2008). Preparation of injectable 3D-formed β-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dental Materials, 27, 827–834.CrossRef Matsuno, T., Hashimoto, Y., Adachi, S., & Omata, K. (2008). Preparation of injectable 3D-formed β-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dental Materials, 27, 827–834.CrossRef
87.
Zurück zum Zitat Huang, W., Li, X., Shi, X., & Lai, C. (2014). Microsphere based scaffolds for bone regenerative applications. Biomaterials Science, 2, 1145.CrossRef Huang, W., Li, X., Shi, X., & Lai, C. (2014). Microsphere based scaffolds for bone regenerative applications. Biomaterials Science, 2, 1145.CrossRef
88.
Zurück zum Zitat Zhang, Z., Eyster, T. W., & Ma, P. X. (2016). Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine, 11, 1611–1628.CrossRef Zhang, Z., Eyster, T. W., & Ma, P. X. (2016). Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine, 11, 1611–1628.CrossRef
89.
Zurück zum Zitat McGinity, J. W., & O’Donnell, P. B. (1997). Preparation of microspheres by the solvent evaporation technique. Advanced Drug Delivery Reviews, 28, 25–42.CrossRef McGinity, J. W., & O’Donnell, P. B. (1997). Preparation of microspheres by the solvent evaporation technique. Advanced Drug Delivery Reviews, 28, 25–42.CrossRef
90.
Zurück zum Zitat Nava-Arzaluz, M. G., Piñón-Segundo, E., Ganem-Rondero, A., & Lechuga-Ballesteros, D. (2012). Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Patents on Drug Delivery & Formulation, 6, 209–223.CrossRef Nava-Arzaluz, M. G., Piñón-Segundo, E., Ganem-Rondero, A., & Lechuga-Ballesteros, D. (2012). Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Patents on Drug Delivery & Formulation, 6, 209–223.CrossRef
91.
Zurück zum Zitat Xia, Y., & Pack, D. W. (2015). Uniform biodegradable microparticle systems for controlled release. Chemical Engineering Science, 125, 129–143.CrossRef Xia, Y., & Pack, D. W. (2015). Uniform biodegradable microparticle systems for controlled release. Chemical Engineering Science, 125, 129–143.CrossRef
92.
Zurück zum Zitat Berkland, C., King, M., Cox, A., Kim, K., & Pack, D. W. (2002). Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 82, 137–147.CrossRef Berkland, C., King, M., Cox, A., Kim, K., & Pack, D. W. (2002). Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 82, 137–147.CrossRef
93.
Zurück zum Zitat Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453, 253–284.CrossRef Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453, 253–284.CrossRef
94.
Zurück zum Zitat Cal, K., & Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. Journal of Pharmaceutical Sciences, 99, 575–586.CrossRef Cal, K., & Sollohub, K. (2010). Spray drying technique. I: Hardware and process parameters. Journal of Pharmaceutical Sciences, 99, 575–586.CrossRef
95.
Zurück zum Zitat Blaker, J. J., Knowles, J. C., & Day, R. M. (2008). Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterialia, 4, 264–272.CrossRef Blaker, J. J., Knowles, J. C., & Day, R. M. (2008). Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterialia, 4, 264–272.CrossRef
96.
Zurück zum Zitat Feng, W., et al. (2015). Synthesis and characterization of nanofibrous hollow microspheres with tunable size and morphology via thermally induced phase separation technique. RSC Advances, 5, 61580–61585.CrossRef Feng, W., et al. (2015). Synthesis and characterization of nanofibrous hollow microspheres with tunable size and morphology via thermally induced phase separation technique. RSC Advances, 5, 61580–61585.CrossRef
97.
Zurück zum Zitat Liu, X., Jin, X., & Ma, P. X. (2011). Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Materials, 10, 398–406.CrossRef Liu, X., Jin, X., & Ma, P. X. (2011). Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Materials, 10, 398–406.CrossRef
98.
Zurück zum Zitat Kuang, R., et al. (2016). Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomaterialia, 33, 225–234.CrossRef Kuang, R., et al. (2016). Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomaterialia, 33, 225–234.CrossRef
Metadaten
Titel
Injectable Gels for Dental and Craniofacial Applications
verfasst von
Mohamed S. Ibrahim
Noha A. El-Wassefy
Dina S. Farahat
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_17

Neuer Inhalt