Skip to main content

2013 | OriginalPaper | Buchkapitel

Innovation Technology to Engineer 3D Living Organs as Intelligent Diagnostic Tools

verfasst von : Hossein Hosseinkhani

Erschienen in: Characterization and Development of Biosystems and Biomaterials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-dimensional (3D) in vitro living organs that can mimic organ and tissue structure and function have great impact on developing advanced biological science and technology from basic biology to drug discovery, and will have great impact on the future of science to use human organs and tissues not only as new therapeutic approaches but also as intelligent biological tools for many applications such as early detection of newly formed diseases, next generation of diagnostic tools, and an alternative energy source called “bio-energy” devices. Many 3D technology have been already developed, but most of these technologies require expensive equipment, large sample volumes, long time process and fabrication, and the most disadvantages of them is that they are too far from the nature of human organs. Because of the above problems, research and development on drug discovery, regenerative medicine, biotech and pharmaceutical industries are very costly and takes several years to bring a single drug/product to the marketing. The goal of 3D technology is to merge biomaterials science, nanotechnology, and biological principles to generate 3D in vitro living organs, to be called human on chip to mimic organs/tissues in order to partially reduce the amount of in vitro and in vivo animal testing, clinical trials, and to solve the above problems. In a single word; its goal is to jump from bench to market in a low cost and short time. At the nanoscale, chemistry and materials are used to fabricate novel type of hydrogels that are similar to human organs, infusing the cell with extracellular matrix (ECM) molecules and gradients of signaling molecules to influence cell development and aggregation. At microscales, fabrication technology such as photolithography is used to produce devices in a variety of shapes and sizes. These products will have to mimic natural organ and tissues from view point of physical, chemical, and biological properties to in order to be used as intelligent tools.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hosseinkhani, H., Inatsugu, Y., Inoue, S., Hiraoka, Y., Tabata, Y.: Perfusion culture enhances the osteogenic differentiation of rat mesenchymal stem cells in collagen sponge rein forced with poly (glycolic acid) fiber. Tissue Eng. 11, 1476–1488 (2005)CrossRef Hosseinkhani, H., Inatsugu, Y., Inoue, S., Hiraoka, Y., Tabata, Y.: Perfusion culture enhances the osteogenic differentiation of rat mesenchymal stem cells in collagen sponge rein forced with poly (glycolic acid) fiber. Tissue Eng. 11, 1476–1488 (2005)CrossRef
2.
Zurück zum Zitat Tian, F., Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Yokoyama, Y., Esterada, G.G., et al.: Quantitative analysis of cell adhesion on aligned micro- and nanofibers. J. Biomed. Mater. Res. Part A 84, 291–299 (2008)CrossRef Tian, F., Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Yokoyama, Y., Esterada, G.G., et al.: Quantitative analysis of cell adhesion on aligned micro- and nanofibers. J. Biomed. Mater. Res. Part A 84, 291–299 (2008)CrossRef
3.
Zurück zum Zitat Xie, Y., Yang, S.T., Kniss, D.A.: Three-dimensional cell-scaffold constructs promote efficient gene transfection: implications for cell-based gene therapy. Tissue Eng. 7, 585–598 (2001)CrossRef Xie, Y., Yang, S.T., Kniss, D.A.: Three-dimensional cell-scaffold constructs promote efficient gene transfection: implications for cell-based gene therapy. Tissue Eng. 7, 585–598 (2001)CrossRef
4.
Zurück zum Zitat Hosseinkhani, H., Azzam, T., Kobayashi, H., Hiraoka, Y., Shimokawa, H., Domb, A.J., et al.: Combination of 3D tissue engineered scaffold and non-viral gene enhance in vitro DNA expression of mesenchymal stem cells. Biomater. 27, 4269–4278 (2006)CrossRef Hosseinkhani, H., Azzam, T., Kobayashi, H., Hiraoka, Y., Shimokawa, H., Domb, A.J., et al.: Combination of 3D tissue engineered scaffold and non-viral gene enhance in vitro DNA expression of mesenchymal stem cells. Biomater. 27, 4269–4278 (2006)CrossRef
5.
Zurück zum Zitat Hosseinkhani, H., Yamamoto, M., Inatsugu, Y., Hiraoka, Y., Inoue, S., Shimokawa, H., et al.: Enhanced ectopic bone formation using a combination of plasmid DNA impregnation into 3D scaffold and bioreactor perfusion culture. Biomater. 27, 1387–1398 (2006)CrossRef Hosseinkhani, H., Yamamoto, M., Inatsugu, Y., Hiraoka, Y., Inoue, S., Shimokawa, H., et al.: Enhanced ectopic bone formation using a combination of plasmid DNA impregnation into 3D scaffold and bioreactor perfusion culture. Biomater. 27, 1387–1398 (2006)CrossRef
6.
Zurück zum Zitat Hutmatcher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomater. 21, 2529–2543 (2000)CrossRef Hutmatcher, D.W.: Scaffolds in tissue engineering bone and cartilage. Biomater. 21, 2529–2543 (2000)CrossRef
7.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Gabrielson, N.P., Pack, D.W., Kobayashi, H.: DNA nanoparticles encapsulated in 3D tissue engineered scaffold enhance osteogenic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. Part A 85, 47–60 (2008)CrossRef Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Gabrielson, N.P., Pack, D.W., Kobayashi, H.: DNA nanoparticles encapsulated in 3D tissue engineered scaffold enhance osteogenic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. Part A 85, 47–60 (2008)CrossRef
8.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Tian, F., Kobayashi, H., Tabata, Y.: Bone regeneration on a collagen sponge-self assembled peptide-amphiphile nanofibers hybrid scaffold. Tissue Eng. 13, 1–9 (2007)CrossRef Hosseinkhani, H., Hosseinkhani, M., Tian, F., Kobayashi, H., Tabata, Y.: Bone regeneration on a collagen sponge-self assembled peptide-amphiphile nanofibers hybrid scaffold. Tissue Eng. 13, 1–9 (2007)CrossRef
9.
Zurück zum Zitat Mueller-Klieser, W.: Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–C1113 (1997) Mueller-Klieser, W.: Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–C1113 (1997)
10.
Zurück zum Zitat Cai, Z., Cheng, G.: Novel method to produce poly(3-hydroxybutyrate) scaffolds with controlled multi-pore size. J. Mater. Sci. Lett. 22, 153–155 (2003)CrossRef Cai, Z., Cheng, G.: Novel method to produce poly(3-hydroxybutyrate) scaffolds with controlled multi-pore size. J. Mater. Sci. Lett. 22, 153–155 (2003)CrossRef
11.
Zurück zum Zitat Zhang, X., Jiang, X.N., Sun, C.: Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators 77, 149–156 (1997)CrossRef Zhang, X., Jiang, X.N., Sun, C.: Micro-stereolithography of polymeric and ceramic microstructures. Sens. Actuators 77, 149–156 (1997)CrossRef
12.
Zurück zum Zitat Kane, R.S., Takayama, S., Ostuni, E., Ingber, D.E., Whitesides, G.M.: Patterning proteins and cells using soft lithography. Biomater. 20, 2363–2376 (1999)CrossRef Kane, R.S., Takayama, S., Ostuni, E., Ingber, D.E., Whitesides, G.M.: Patterning proteins and cells using soft lithography. Biomater. 20, 2363–2376 (1999)CrossRef
13.
Zurück zum Zitat Mikos, A.G., Sakarinos, G.J., Vacanti, P., Langer, R.S., Cima, L.G.: Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures. US Patent number 5,514,378, (1996) Mikos, A.G., Sakarinos, G.J., Vacanti, P., Langer, R.S., Cima, L.G.: Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures. US Patent number 5,514,378, (1996)
14.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Kobayashi, H., Tabata, Y.: Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomater. 27, 5836–5844 (2006)CrossRef Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Kobayashi, H., Tabata, Y.: Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomater. 27, 5836–5844 (2006)CrossRef
15.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Kobayashi, H.: Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J. Contr. Release 117, 380–386 (2007)CrossRef Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A., Kobayashi, H.: Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J. Contr. Release 117, 380–386 (2007)CrossRef
16.
Zurück zum Zitat Mohageri, S., Hosseinkhani, H., Ebrahimi, N.G., Solimani, M., Kajbafzadeh, A.M.: Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephathalate blend fibers. Tissue Eng. Part A 16, 3821–3830 (2010)CrossRef Mohageri, S., Hosseinkhani, H., Ebrahimi, N.G., Solimani, M., Kajbafzadeh, A.M.: Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephathalate blend fibers. Tissue Eng. Part A 16, 3821–3830 (2010)CrossRef
17.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Hattori, S., Matsuoka, R., Kawaguchi, N.: Micro and nanoscale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. Part A 94, 1–8 (2010)CrossRef Hosseinkhani, H., Hosseinkhani, M., Hattori, S., Matsuoka, R., Kawaguchi, N.: Micro and nanoscale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. Part A 94, 1–8 (2010)CrossRef
18.
Zurück zum Zitat Schmidt, C.E., Leach, J.B.: Neural tissue engineering: strategies for repair and regeneration. Ann. Rev. Biomed. Eng. 5, 293–347 (2003)CrossRef Schmidt, C.E., Leach, J.B.: Neural tissue engineering: strategies for repair and regeneration. Ann. Rev. Biomed. Eng. 5, 293–347 (2003)CrossRef
19.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Tian, F., Kobayashi, H., Tabata, Y.: Osteogenic differentiation of mesenchymal stem cells in self assembled-peptide amphiphile nanofibers. Biomater. 27, 4079–4086 (2006)CrossRef Hosseinkhani, H., Hosseinkhani, M., Tian, F., Kobayashi, H., Tabata, Y.: Osteogenic differentiation of mesenchymal stem cells in self assembled-peptide amphiphile nanofibers. Biomater. 27, 4079–4086 (2006)CrossRef
20.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Kobayashi, H.: Design of tissue engineered nanoscaffold through self assembly of peptide amphiphile. J. Bioact. Compat. Pol. 21, 277–296 (2006)CrossRef Hosseinkhani, H., Hosseinkhani, M., Kobayashi, H.: Design of tissue engineered nanoscaffold through self assembly of peptide amphiphile. J. Bioact. Compat. Pol. 21, 277–296 (2006)CrossRef
21.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A.: Emerging applications of hydrogels and microscale technologies in drug discovery. Drug Discov. 1, 32–34 (2006) Hosseinkhani, H., Hosseinkhani, M., Khademhosseini, A.: Emerging applications of hydrogels and microscale technologies in drug discovery. Drug Discov. 1, 32–34 (2006)
22.
Zurück zum Zitat Hosseinkhani, H., Hosseinkhani, M., Kobayashi, H.: Proliferation and differentiation of mesenchymal stem cells by using self assembly of peptide-amphiphile nanofibers. Biomed. Mater. 1, 8–15 (2006)CrossRef Hosseinkhani, H., Hosseinkhani, M., Kobayashi, H.: Proliferation and differentiation of mesenchymal stem cells by using self assembly of peptide-amphiphile nanofibers. Biomed. Mater. 1, 8–15 (2006)CrossRef
23.
Zurück zum Zitat Maquet, V., Martin, D., Scholtes, F., Franzen, R., Schoenen, J., Moonen, G., Jérôme, R.: Poly(D, L-lactide) foams modified by poly(ethylene oxide)-block-poly(D, L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomater. 22, 1137–1146 (2001)CrossRef Maquet, V., Martin, D., Scholtes, F., Franzen, R., Schoenen, J., Moonen, G., Jérôme, R.: Poly(D, L-lactide) foams modified by poly(ethylene oxide)-block-poly(D, L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomater. 22, 1137–1146 (2001)CrossRef
Metadaten
Titel
Innovation Technology to Engineer 3D Living Organs as Intelligent Diagnostic Tools
verfasst von
Hossein Hosseinkhani
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31470-4_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.