Skip to main content
Erschienen in: Journal of Computational Electronics 1/2020

07.01.2020

Innovative multi-threshold gate-overlap tunnel FET (GOTFET) devices for superior ultra-low power digital, ternary and analog circuits at 45-nm technology node

verfasst von: Ramakant Yadav, Surya S. Dan, Sanjay Vidhyadharan, Simhadri Hariprasad

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, four different types of gate-overlap tunnel FET (GOTFET) devices are proposed for ultra-low power applications: (1) generic GOTFETs for digital logic, (2) low- and high-threshold (LVT and HVT) GOTFETs for ternary logic, (3) multi-threshold GOTFETs giving both LVT and HVT characteristics by simply altering their terminal connections and (4) line-tunneling-based GOTFETs for analog applications. The most interesting feature of the proposed GOTFET is that in the same device structure, just by changing the material and doping parameters of the device, we can get the optimal performance for different applications. Each of these GOTFET structures have been optimized such that their characteristics are superior than equally sized 45-nm MOSFETs. Device optimization has been carried out by studying the impact of changes in various device parameters on performance. GOTFET characteristics were simulated using industry-standard \(\hbox {synopsys}^{\textregistered }\) TCAD tools, while the benchmarking with an equivalent CMOS technology was carried out using the standard 45-nm CMOS library in industry-standard \(\hbox {cadence}^{\textregistered }\) EDA tool. Proposed GOTFETs have minimum on-state currents \(I_{\rm on}\) at least twice (\(I_{\rm on,GOT} \ge\)\(2I_{\rm on,MOS}\)), with maximum off-state currents \(I_{\rm off}\) remaining at least an order of magnitude lower (\(I_{\rm off,GOT}\)\(\le 0.1I_{\rm off,MOS}\)), than the corresponding equally sized MOSFETs at the same 45-nm technology node. Circuit analysis and designs are beyond the scope of this paper; however, the innovative GOTFETs proposed in this paper will serve as the basic active devices in digital, ternary logic and analog applications yielding circuit performance far superior to the state-of-the-art designs at the same technology node, as indicated in our previous reports.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, New York (1998) Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, New York (1998)
2.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Fundamentals of Tunnel Field-Effect Transistors. CRC Press, Boca Raton (2016). Google-Books-ID: bjANDgAAQBAJCrossRef Saurabh, S., Kumar, M.J.: Fundamentals of Tunnel Field-Effect Transistors. CRC Press, Boca Raton (2016). Google-Books-ID: bjANDgAAQBAJCrossRef
15.
Zurück zum Zitat Schulte-Braucks, C., Pandey, R., Sajjad, R.N., Barth, M., Ghosh, R.K., Grisafe, B., Sharma, P., von den Driesch, N., Vohra, A., Rayner, G.B., Loo, R., Mantl, S., Buca, D., Yeh, C., Wu, C., Tsai, W., Antoniadis, D.A., Datta, S.: Fabrication, characterization, and analysis of Ge/GeSn heterojunction p-type tunnel transistors. IEEE Trans. Electron Dev. 64(10), 4354 (2017). https://doi.org/10.1109/TED.2017.2742957 CrossRef Schulte-Braucks, C., Pandey, R., Sajjad, R.N., Barth, M., Ghosh, R.K., Grisafe, B., Sharma, P., von den Driesch, N., Vohra, A., Rayner, G.B., Loo, R., Mantl, S., Buca, D., Yeh, C., Wu, C., Tsai, W., Antoniadis, D.A., Datta, S.: Fabrication, characterization, and analysis of Ge/GeSn heterojunction p-type tunnel transistors. IEEE Trans. Electron Dev. 64(10), 4354 (2017). https://​doi.​org/​10.​1109/​TED.​2017.​2742957 CrossRef
21.
23.
Zurück zum Zitat Vidhyadharan, S., Yadav, R., Hariprasad, S., Dan, S.S.: A Nanoscale gate-overlap tunnel FET (GOTFET) based improved double tail dynamic comparator for ultra-low-power VLSI applications. Springer Analog Integrated Circuits & Signal Processing (2019). https://doi.org/10.1007/s10470-019-01487-x Vidhyadharan, S., Yadav, R., Hariprasad, S., Dan, S.S.: A Nanoscale gate-overlap tunnel FET (GOTFET) based improved double tail dynamic comparator for ultra-low-power VLSI applications. Springer Analog Integrated Circuits & Signal Processing (2019). https://​doi.​org/​10.​1007/​s10470-019-01487-x
24.
Zurück zum Zitat Yadav, R., Vidhyadharan, S., Akhilesh, G., Gupta, V., Ravi, A., Dan, S.S.: The physics of semiconductor devices. In: Sharma, R.K., Rawal, D. (eds.) Part I: Optimization of the Tunnel FET Device Structure for Achieving Circuit Performance Better Than the Current Standard 45 Nm CMOS Technology, pp. 611–618. Springer, Berlin (2018) Yadav, R., Vidhyadharan, S., Akhilesh, G., Gupta, V., Ravi, A., Dan, S.S.: The physics of semiconductor devices. In: Sharma, R.K., Rawal, D. (eds.) Part I: Optimization of the Tunnel FET Device Structure for Achieving Circuit Performance Better Than the Current Standard 45 Nm CMOS Technology, pp. 611–618. Springer, Berlin (2018)
25.
Zurück zum Zitat Vidhyadharan, S., Yadav, R., Akhilesh, G., Gupta, V., Ravi, A., Dan, S.S.: The physics of semiconductor devices. In: Sharma, R.K., Rawal, D. (eds.) Part II: Benchmarking the Performance of Optimized TFET-Based Circuits with the Standard 45 Nm CMOS Technology Using Device & Circuit Co-Simulation Methodology, pp. 619–628. Springer, Berlin (2019) Vidhyadharan, S., Yadav, R., Akhilesh, G., Gupta, V., Ravi, A., Dan, S.S.: The physics of semiconductor devices. In: Sharma, R.K., Rawal, D. (eds.) Part II: Benchmarking the Performance of Optimized TFET-Based Circuits with the Standard 45 Nm CMOS Technology Using Device & Circuit Co-Simulation Methodology, pp. 619–628. Springer, Berlin (2019)
26.
27.
29.
Zurück zum Zitat Vidhyadharan, S., Yadav, R., Dan, S.S.: Taylor and Francis Journal of Electronics. Article accepted, will be available online shortly Vidhyadharan, S., Yadav, R., Dan, S.S.: Taylor and Francis Journal of Electronics. Article accepted, will be available online shortly
37.
Zurück zum Zitat Walke, A.M., Vandooren, A., Rooyackers, R., Leonelli, D., Hikavyy, A., Loo, R., Verhulst, A.S., Kao, K., Huyghebaert, C., Groeseneken, G., Rao, V.R., Bhuwalka, K.K., Heyns, M.M., Collaert, N., Thean, A.V.: Fabrication and analysis of a \({\rm Si}/{\rm Si}_0.55 {\rm Ge}_0.45\) heterojunction line tunnel FET. IEEE Trans. Electron Dev. 61(3), 707 (2014). https://doi.org/10.1109/TED.2014.2299337 CrossRef Walke, A.M., Vandooren, A., Rooyackers, R., Leonelli, D., Hikavyy, A., Loo, R., Verhulst, A.S., Kao, K., Huyghebaert, C., Groeseneken, G., Rao, V.R., Bhuwalka, K.K., Heyns, M.M., Collaert, N., Thean, A.V.: Fabrication and analysis of a \({\rm Si}/{\rm Si}_0.55 {\rm Ge}_0.45\) heterojunction line tunnel FET. IEEE Trans. Electron Dev. 61(3), 707 (2014). https://​doi.​org/​10.​1109/​TED.​2014.​2299337 CrossRef
38.
Zurück zum Zitat Zhang, L., Chan, M.: Tunneling Field Effect Transistor Technology, Chapter 2. Springer, Berlin (2016) Zhang, L., Chan, M.: Tunneling Field Effect Transistor Technology, Chapter 2. Springer, Berlin (2016)
43.
Zurück zum Zitat Dewey, G., Chu-Kung, B., Boardman, J., Fastenau, J.M., Kavalieros, J., Kotlyar, R., Liu, W.K., Lubyshev, D., Metz, M., Mukherjee, N., Oakey, P., Pillarisetty, R., Radosavljevic, M., Then, H.W., Chau, R.: In: 2011 International Electron Devices Meeting, pp. 33.6.1–33.6.4 (2011). https://doi.org/10.1109/IEDM.2011.6131666 Dewey, G., Chu-Kung, B., Boardman, J., Fastenau, J.M., Kavalieros, J., Kotlyar, R., Liu, W.K., Lubyshev, D., Metz, M., Mukherjee, N., Oakey, P., Pillarisetty, R., Radosavljevic, M., Then, H.W., Chau, R.: In: 2011 International Electron Devices Meeting, pp. 33.6.1–33.6.4 (2011). https://​doi.​org/​10.​1109/​IEDM.​2011.​6131666
45.
Zurück zum Zitat Tsividis, Y., McAndrew, C.: Operation and Modeling of the MOS Transistor, 3rd edn, pp. 95–96. Oxford University Press, Oxford (2008) Tsividis, Y., McAndrew, C.: Operation and Modeling of the MOS Transistor, 3rd edn, pp. 95–96. Oxford University Press, Oxford (2008)
47.
Metadaten
Titel
Innovative multi-threshold gate-overlap tunnel FET (GOTFET) devices for superior ultra-low power digital, ternary and analog circuits at 45-nm technology node
verfasst von
Ramakant Yadav
Surya S. Dan
Sanjay Vidhyadharan
Simhadri Hariprasad
Publikationsdatum
07.01.2020
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2020
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01440-1

Weitere Artikel der Ausgabe 1/2020

Journal of Computational Electronics 1/2020 Zur Ausgabe

Neuer Inhalt