Skip to main content

2019 | OriginalPaper | Buchkapitel

Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge

verfasst von : Nasrin Moini, Arash Jahandideh, Gary Anderson

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces and discusses the nanocomposite hydrogels, based on inorganic particles, including inorganic ceramics (clays), and nanofillers of carbon, silicon, metal, and metal oxide. Various nanoparticle preparation methods will be presented in brief. Depending on the inorganic particle types, assorted preparation methods for nanocomposite hydrogels, and their corresponding characterization methods will be assessed. Inorganic particles not only improve the mechanical strength of these soft materials (gels) but also confer specific properties into the gel networks; stimuli-responsive hydrogels are good examples. Nanocomposite hydrogels have been engineered to be used in various applications, including tissue engineering, drug delivery, water treatment, conductive materials, optoelectronic, and supercapacitors. Furthermore, stimuli-responsiveness feature, the ability of bio-fabrication, and the capability of 3D printing introduce them as potential candidates for the fabrication of smart materials with complicated structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRef Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRef
2.
Zurück zum Zitat Peppas NA (2012) Hydrogel. Introd Mater Med, pp 35–42 Peppas NA (2012) Hydrogel. Introd Mater Med, pp 35–42
3.
Zurück zum Zitat Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… A review. Saudi Pharm J 24(5):554–559CrossRef Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… A review. Saudi Pharm J 24(5):554–559CrossRef
4.
Zurück zum Zitat Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym (Guildf) 49(8):1993–2007CrossRef Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym (Guildf) 49(8):1993–2007CrossRef
5.
Zurück zum Zitat Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRef Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRef
6.
Zurück zum Zitat Chu L, Ju X, Xie R, Wang W (2013) Smart hydrogel functional materials Chu L, Ju X, Xie R, Wang W (2013) Smart hydrogel functional materials
7.
Zurück zum Zitat Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11CrossRef Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11CrossRef
8.
Zurück zum Zitat Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers, vol 51, no 1. Springer US Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers, vol 51, no 1. Springer US
9.
Zurück zum Zitat Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486CrossRef Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486CrossRef
10.
Zurück zum Zitat Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRef Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRef
11.
Zurück zum Zitat Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRef Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRef
12.
Zurück zum Zitat Moini N, Kabiri K (2015) Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iran Polym J 24(11):977–987CrossRef Moini N, Kabiri K (2015) Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iran Polym J 24(11):977–987CrossRef
13.
Zurück zum Zitat Moini N, Kabiri K, Zohuriaan-Mehr MJ (2018) Surface treatment of superabsorbent. US Pat. 2018/0008960 Moini N, Kabiri K, Zohuriaan-Mehr MJ (2018) Surface treatment of superabsorbent. US Pat. 2018/0008960
14.
Zurück zum Zitat Moini N, Kabiri K, Zohuriaan-Mehr MJ (2015) Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface. Polym Plast Technol Eng 55(3):278–290CrossRef Moini N, Kabiri K, Zohuriaan-Mehr MJ (2015) Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface. Polym Plast Technol Eng 55(3):278–290CrossRef
15.
Zurück zum Zitat Moini N, Kabiri K, Zohuriaan-mehr MJ, Esmaeili N (2015) Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polym Bull 73(4):1119–1133CrossRef Moini N, Kabiri K, Zohuriaan-mehr MJ, Esmaeili N (2015) Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polym Bull 73(4):1119–1133CrossRef
16.
Zurück zum Zitat Moini N, Kabiri K, Zohuriaan-Mehr MJ, Omidian H, Esmaeili N (2017) Fine tuning of SAP properties via epoxy-silane surface modification. Polym Adv Technol 28(9):1132–1147CrossRef Moini N, Kabiri K, Zohuriaan-Mehr MJ, Omidian H, Esmaeili N (2017) Fine tuning of SAP properties via epoxy-silane surface modification. Polym Adv Technol 28(9):1132–1147CrossRef
17.
Zurück zum Zitat Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, Hoboken Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, Hoboken
18.
Zurück zum Zitat Buchholz FL, Peppas NA (1994) Superabsorbent polymers. ACS, Washington DCCrossRef Buchholz FL, Peppas NA (1994) Superabsorbent polymers. ACS, Washington DCCrossRef
19.
Zurück zum Zitat Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Reports 93:1–49CrossRef Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Reports 93:1–49CrossRef
20.
Zurück zum Zitat Zeldovich KB, Khokhlov AR (1999) Osmotically active and passive counterions in inhomogeneous polymer gels. Macromolecules 32(10):3488–3494CrossRef Zeldovich KB, Khokhlov AR (1999) Osmotically active and passive counterions in inhomogeneous polymer gels. Macromolecules 32(10):3488–3494CrossRef
21.
Zurück zum Zitat Rutz AL, Shah RN (2016) Polymeric hydrogels as smart biomaterials Rutz AL, Shah RN (2016) Polymeric hydrogels as smart biomaterials
22.
Zurück zum Zitat Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64(8):1007–1025CrossRef Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64(8):1007–1025CrossRef
23.
Zurück zum Zitat Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science, 356 (6337) Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science, 356 (6337)
24.
Zurück zum Zitat Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5):672–687CrossRef Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5):672–687CrossRef
25.
Zurück zum Zitat Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047CrossRef Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047CrossRef
26.
Zurück zum Zitat Ilg P (2013) Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9(13):3465CrossRef Ilg P (2013) Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9(13):3465CrossRef
27.
Zurück zum Zitat Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32(16):1253–1258CrossRef Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32(16):1253–1258CrossRef
28.
Zurück zum Zitat Gupta RB, Kompella UB (2006) Nanoparticle technology for drug delivery, vol 159. New York Gupta RB, Kompella UB (2006) Nanoparticle technology for drug delivery, vol 159. New York
29.
Zurück zum Zitat Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110CrossRef Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110CrossRef
30.
Zurück zum Zitat Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2):1–13 Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2):1–13
31.
Zurück zum Zitat Schwartz VB et al (2012) Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (N-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 22(11):2376–2386CrossRef Schwartz VB et al (2012) Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (N-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 22(11):2376–2386CrossRef
32.
Zurück zum Zitat Zhao X et al (2006) A kind of smart gold nanoparticle–hydrogel composite with tunable thermo-switchable electrical properties. New J Chem 30(6):915–920CrossRef Zhao X et al (2006) A kind of smart gold nanoparticle–hydrogel composite with tunable thermo-switchable electrical properties. New J Chem 30(6):915–920CrossRef
33.
Zurück zum Zitat Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Long X (2005) Thermoswitchable electronic properties of a gold nanoparticle/hydrogel composite. Macromol Rapid Commun 26(22):1784–1787CrossRef Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Long X (2005) Thermoswitchable electronic properties of a gold nanoparticle/hydrogel composite. Macromol Rapid Commun 26(22):1784–1787CrossRef
34.
Zurück zum Zitat Baumann B, Wittig R, Lindén M (2017) Mesoporous silica nanoparticles in injectable hydrogels: factors influencing cellular uptake and viability. Nanoscale 9:12379–12390CrossRef Baumann B, Wittig R, Lindén M (2017) Mesoporous silica nanoparticles in injectable hydrogels: factors influencing cellular uptake and viability. Nanoscale 9:12379–12390CrossRef
35.
Zurück zum Zitat Chang C, Peng J, Zhang L, Pang D-W (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19(41):7771CrossRef Chang C, Peng J, Zhang L, Pang D-W (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19(41):7771CrossRef
36.
Zurück zum Zitat Villanueva ME et al (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8(25):16280–16288CrossRef Villanueva ME et al (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8(25):16280–16288CrossRef
37.
Zurück zum Zitat Li Y et al (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672CrossRef Li Y et al (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672CrossRef
38.
Zurück zum Zitat Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978CrossRef Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978CrossRef
39.
Zurück zum Zitat Chen CH, Abate AR, Lee D, Terentjev EM, Weitz DA (2009) Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater 21(31):3201–3204CrossRef Chen CH, Abate AR, Lee D, Terentjev EM, Weitz DA (2009) Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater 21(31):3201–3204CrossRef
40.
Zurück zum Zitat Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92(2):2193–2200CrossRef Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92(2):2193–2200CrossRef
41.
Zurück zum Zitat Kim J-H, Lee TR (2006) Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles. Drug Dev Res 67:61–69CrossRef Kim J-H, Lee TR (2006) Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles. Drug Dev Res 67:61–69CrossRef
42.
Zurück zum Zitat Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I (2001) Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv Mater 13(17):1320–1323CrossRef Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I (2001) Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv Mater 13(17):1320–1323CrossRef
43.
Zurück zum Zitat Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL (2003) Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater 15(22):4332–4336CrossRef Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL (2003) Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater 15(22):4332–4336CrossRef
44.
Zurück zum Zitat Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21(3):355–369CrossRef Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21(3):355–369CrossRef
45.
Zurück zum Zitat Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48(1):158–164CrossRef Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48(1):158–164CrossRef
46.
Zurück zum Zitat Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224CrossRef Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224CrossRef
47.
Zurück zum Zitat Zou X et al (2017) Preparation of a novel antibacterial chitosan-poly(ethylene glycol) cryogel/silver nanoparticles composites. J Biomater Sci Polym Ed 28(13):1324–1337CrossRef Zou X et al (2017) Preparation of a novel antibacterial chitosan-poly(ethylene glycol) cryogel/silver nanoparticles composites. J Biomater Sci Polym Ed 28(13):1324–1337CrossRef
48.
Zurück zum Zitat Helminger M et al (2014) Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Funct Mater 24(21):3187–3196CrossRef Helminger M et al (2014) Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Funct Mater 24(21):3187–3196CrossRef
49.
Zurück zum Zitat Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43(17):4403–4411CrossRef Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43(17):4403–4411CrossRef
50.
Zurück zum Zitat Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng, C 57:414–433CrossRef Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng, C 57:414–433CrossRef
51.
Zurück zum Zitat Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453CrossRef Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453CrossRef
52.
Zurück zum Zitat Zhang D, Yang J, Bao S, Wu Q, Wang Q (2013) Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Sci Rep 3(1):1399CrossRef Zhang D, Yang J, Bao S, Wu Q, Wang Q (2013) Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Sci Rep 3(1):1399CrossRef
53.
Zurück zum Zitat Castaneda L, Valle J, Yang N, Pluskat S, Slowinska K (2009) Collagen crosslinking with Au nanoparticles. Biomacromolecules 9(12):3383–3388CrossRef Castaneda L, Valle J, Yang N, Pluskat S, Slowinska K (2009) Collagen crosslinking with Au nanoparticles. Biomacromolecules 9(12):3383–3388CrossRef
54.
Zurück zum Zitat Rose S, Prevoteau A, Elzière P, Hourdet D, Marcellan A, Leibler L (2013) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483):382–385CrossRef Rose S, Prevoteau A, Elzière P, Hourdet D, Marcellan A, Leibler L (2013) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483):382–385CrossRef
55.
Zurück zum Zitat Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6(15):3619CrossRef Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6(15):3619CrossRef
56.
Zurück zum Zitat Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7(12):4139–4148CrossRef Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7(12):4139–4148CrossRef
57.
Zurück zum Zitat Wu H et al (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943–1946CrossRef Wu H et al (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943–1946CrossRef
58.
Zurück zum Zitat Magasinski A et al (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010CrossRef Magasinski A et al (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010CrossRef
59.
Zurück zum Zitat Liu G et al (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23(40):4679–4683CrossRef Liu G et al (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23(40):4679–4683CrossRef
60.
Zurück zum Zitat Bridel JS, Azaïs T, Morcrette M, Tarascon JM, Larcher D (2010) Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chem Mater 22(3):1229–1241CrossRef Bridel JS, Azaïs T, Morcrette M, Tarascon JM, Larcher D (2010) Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chem Mater 22(3):1229–1241CrossRef
61.
Zurück zum Zitat Gao G, Du G, Sun Y, Fu J (2015) Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces 7(8):5029–5037CrossRef Gao G, Du G, Sun Y, Fu J (2015) Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces 7(8):5029–5037CrossRef
62.
Zurück zum Zitat Özkahraman B, Acar I, Emik S (2011) Removal of Cu 2+ and Pb 2+ ions using CMC based thermoresponsive nanocomposite hydrogel. Clean - Soil, Air, Water 39(7):658–664CrossRef Özkahraman B, Acar I, Emik S (2011) Removal of Cu 2+ and Pb 2+ ions using CMC based thermoresponsive nanocomposite hydrogel. Clean - Soil, Air, Water 39(7):658–664CrossRef
63.
Zurück zum Zitat Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite. Biomacromolecules 12:1641–1650CrossRef Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite. Biomacromolecules 12:1641–1650CrossRef
64.
Zurück zum Zitat Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials - a short review. Carbohydr Polym 82(2):227–232CrossRef Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials - a short review. Carbohydr Polym 82(2):227–232CrossRef
65.
Zurück zum Zitat Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160CrossRef Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160CrossRef
66.
Zurück zum Zitat Gaharwar AK et al (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRef Gaharwar AK et al (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRef
67.
Zurück zum Zitat Gaharwar AK et al (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12(6):779–793CrossRef Gaharwar AK et al (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12(6):779–793CrossRef
68.
Zurück zum Zitat Kaşgöz H, Durmuş A, Ka A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220CrossRef Kaşgöz H, Durmuş A, Ka A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220CrossRef
69.
Zurück zum Zitat Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/ silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43CrossRef Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/ silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43CrossRef
70.
Zurück zum Zitat Mekewi M, Shebl A, Imam AI, Amin MS, Albert T (2012) Screening the insecticidal efficacy of nano ZnO synthesized via in-situ polymerization of crosslinked polyacrylic acid as a template. J Mater Sci Technol 28(11):961–968CrossRef Mekewi M, Shebl A, Imam AI, Amin MS, Albert T (2012) Screening the insecticidal efficacy of nano ZnO synthesized via in-situ polymerization of crosslinked polyacrylic acid as a template. J Mater Sci Technol 28(11):961–968CrossRef
71.
Zurück zum Zitat Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Shropshire, United Kingdom Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Shropshire, United Kingdom
72.
Zurück zum Zitat Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on laponite. Langmuir 20(6):2298–2304CrossRef Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on laponite. Langmuir 20(6):2298–2304CrossRef
73.
Zurück zum Zitat Loizou E et al (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38(6):2047–2049CrossRef Loizou E et al (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38(6):2047–2049CrossRef
74.
Zurück zum Zitat Kevadiya BD, Joshi GV, Patel HA, Ingole PG, Mody HM, Bajaj HC (2010) Montmorillonite-Alginate nanocomposites as a drug delivery system: Intercalation and in vitro release of vitamin B1 and vitamin B6. J Biomater Appl 25(2):161–177CrossRef Kevadiya BD, Joshi GV, Patel HA, Ingole PG, Mody HM, Bajaj HC (2010) Montmorillonite-Alginate nanocomposites as a drug delivery system: Intercalation and in vitro release of vitamin B1 and vitamin B6. J Biomater Appl 25(2):161–177CrossRef
75.
Zurück zum Zitat Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res - Part A 44:53–62CrossRef Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res - Part A 44:53–62CrossRef
76.
Zurück zum Zitat Bao J, Chen S, Wu B, Ma M, Shi Y, Wang X (2015) A novel foaming approach to prepare porous superabsorbent poly(sodium acrylic acid) resins. J Appl Polym Sci, 132(3):n/a–n/a Bao J, Chen S, Wu B, Ma M, Shi Y, Wang X (2015) A novel foaming approach to prepare porous superabsorbent poly(sodium acrylic acid) resins. J Appl Polym Sci, 132(3):n/a–n/a
77.
Zurück zum Zitat Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289(7):653–661CrossRef Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289(7):653–661CrossRef
78.
Zurück zum Zitat Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12CrossRef Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12CrossRef
79.
Zurück zum Zitat Demirtaş TT, Karakeçili AG, Gümüşderelioğlu M (2008) Hydroxyapatite containing superporous hydrogel composites: synthesis and in-vitro characterization. J Mater Sci 19:729–735 Demirtaş TT, Karakeçili AG, Gümüşderelioğlu M (2008) Hydroxyapatite containing superporous hydrogel composites: synthesis and in-vitro characterization. J Mater Sci 19:729–735
80.
Zurück zum Zitat Kabiri K et al (2011) Superabsorbent polymer composites: does clay always improve properties? J Mater Sci 46(20):6718–6725CrossRef Kabiri K et al (2011) Superabsorbent polymer composites: does clay always improve properties? J Mater Sci 46(20):6718–6725CrossRef
81.
Zurück zum Zitat Zheng Y, Zhu Y, Wang A (2014) Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem Eng J 257:66–73CrossRef Zheng Y, Zhu Y, Wang A (2014) Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem Eng J 257:66–73CrossRef
82.
Zurück zum Zitat Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322(1–3):47–53CrossRef Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322(1–3):47–53CrossRef
83.
Zurück zum Zitat Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study, vol 20, no 3. Elsevier B.V Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study, vol 20, no 3. Elsevier B.V
84.
Zurück zum Zitat Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70(8):2451–2470CrossRef Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70(8):2451–2470CrossRef
85.
Zurück zum Zitat Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22(4):486–493CrossRef Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22(4):486–493CrossRef
86.
Zurück zum Zitat Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171(1–3):671–677CrossRef Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171(1–3):671–677CrossRef
87.
Zurück zum Zitat Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci Part A Pure Appl Chem 47(1):33–38CrossRef Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci Part A Pure Appl Chem 47(1):33–38CrossRef
88.
Zurück zum Zitat Wang Y, Wang W, Wang A (2013) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139CrossRef Wang Y, Wang W, Wang A (2013) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139CrossRef
89.
Zurück zum Zitat Zheng Y, Wang A (2010) Removal of heavy metals using polyvinyl alcohol semi-IPN poly(acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J 162(1):186–193CrossRef Zheng Y, Wang A (2010) Removal of heavy metals using polyvinyl alcohol semi-IPN poly(acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J 162(1):186–193CrossRef
90.
Zurück zum Zitat Saber-Samandari S, Saber-Samandari S, Gazi M (2013) Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu(II) ions, vol 73, no 11. Elsevier Ltd Saber-Samandari S, Saber-Samandari S, Gazi M (2013) Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu(II) ions, vol 73, no 11. Elsevier Ltd
91.
Zurück zum Zitat Wang X, Wang A (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45(14):2086–2094CrossRef Wang X, Wang A (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45(14):2086–2094CrossRef
92.
Zurück zum Zitat Zhu Y, Zheng Y, Wang A (2015) Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La(III) and Ce(III). J Environ Chem Eng 3(2):1416–1425CrossRef Zhu Y, Zheng Y, Wang A (2015) Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La(III) and Ce(III). J Environ Chem Eng 3(2):1416–1425CrossRef
93.
Zurück zum Zitat Anirudhan TS, Suchithra PS, Arauf T (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium (IV) from aqueous solutions using poly (methacrylic acid) grafted cellulose/bentonite superabsorbent composite kinetic and equilibrium profiles of adsorptive recovery of thorium (IV), no IV Anirudhan TS, Suchithra PS, Arauf T (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium (IV) from aqueous solutions using poly (methacrylic acid) grafted cellulose/bentonite superabsorbent composite kinetic and equilibrium profiles of adsorptive recovery of thorium (IV), no IV
94.
Zurück zum Zitat Zhu Y, Zheng Y, Wang A (2015) A simple approach to fabricate granular adsorbent for adsorption of rare elements. Int J Biol Macromol 72:410–420CrossRef Zhu Y, Zheng Y, Wang A (2015) A simple approach to fabricate granular adsorbent for adsorption of rare elements. Int J Biol Macromol 72:410–420CrossRef
95.
Zurück zum Zitat Wang M, Li X, Hua W, Shen L, Yu X, Wang X (2016) Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence performance. ACS Appl Mater Interfaces 8(36):23995–24007CrossRef Wang M, Li X, Hua W, Shen L, Yu X, Wang X (2016) Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence performance. ACS Appl Mater Interfaces 8(36):23995–24007CrossRef
96.
Zurück zum Zitat Zheng Y, Wang A (2015) Superadsorbent with three-dimensional networks: from bulk hydrogel to granular hydrogel. Eur Polym J Zheng Y, Wang A (2015) Superadsorbent with three-dimensional networks: from bulk hydrogel to granular hydrogel. Eur Polym J
97.
Zurück zum Zitat Yang X, Ni L (2012) Synthesis of hybrid hydrogel of poly(AM co DADMAC)/silica sol and removal of methyl orange from aqueous solutions. Chem Eng J 209:194–200CrossRef Yang X, Ni L (2012) Synthesis of hybrid hydrogel of poly(AM co DADMAC)/silica sol and removal of methyl orange from aqueous solutions. Chem Eng J 209:194–200CrossRef
98.
Zurück zum Zitat Dhodapkar R, Rao NN, Pande SP, Nandy T, Devotta S (2007) Adsorption of cationic dyes on Jalshakti®, super absorbent polymer and photocatalytic regeneration of the adsorbent. React Funct Polym 67(6):540–548CrossRef Dhodapkar R, Rao NN, Pande SP, Nandy T, Devotta S (2007) Adsorption of cationic dyes on Jalshakti®, super absorbent polymer and photocatalytic regeneration of the adsorbent. React Funct Polym 67(6):540–548CrossRef
99.
Zurück zum Zitat Ma X, Sun X, Chen J, Lei Y (2017) Natural or natural-synthetic hybrid polymer-based fluorescent polymeric materials for bio-imaging-related applications. Appl Biochem Biotechnol 183(2):461–487CrossRef Ma X, Sun X, Chen J, Lei Y (2017) Natural or natural-synthetic hybrid polymer-based fluorescent polymeric materials for bio-imaging-related applications. Appl Biochem Biotechnol 183(2):461–487CrossRef
100.
Zurück zum Zitat Zheng Y et al (2003) Immobilization of quantum dots in the photo-cross-linked poly (ethylene glycol)-based hydrogel, J Phys Chem B, pp 10464–10469 Zheng Y et al (2003) Immobilization of quantum dots in the photo-cross-linked poly (ethylene glycol)-based hydrogel, J Phys Chem B, pp 10464–10469
101.
Zurück zum Zitat Cheng Z, Liu S, Beines PW, Ding N, Jakubowicz P, Knoll W (2008) Rapid and highly efficient preparation of water-soluble luminescent quantum dots via encapsulation by thermo-and redox-responsive hydrogels. Chem Mater 20:7215–7219CrossRef Cheng Z, Liu S, Beines PW, Ding N, Jakubowicz P, Knoll W (2008) Rapid and highly efficient preparation of water-soluble luminescent quantum dots via encapsulation by thermo-and redox-responsive hydrogels. Chem Mater 20:7215–7219CrossRef
102.
Zurück zum Zitat Wang YQ et al (2017) Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties. J Polym Res, 24(12) Wang YQ et al (2017) Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties. J Polym Res, 24(12)
103.
Zurück zum Zitat Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 974:93–99CrossRef Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 974:93–99CrossRef
104.
Zurück zum Zitat Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels. Nanoscale 5(22):10858CrossRef Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels. Nanoscale 5(22):10858CrossRef
105.
Zurück zum Zitat Kakkar P, Madhan B (2016) Fabrication of keratin-silica hydrogel for biomedical applications. Mater Sci Eng, C 66:178–184CrossRef Kakkar P, Madhan B (2016) Fabrication of keratin-silica hydrogel for biomedical applications. Mater Sci Eng, C 66:178–184CrossRef
106.
Zurück zum Zitat Algi MP, Okay O (2014) Highly stretchable self-healing poly(N, N-dimethylacrylamide) hydrogels. Eur Polym. J 59:113–121CrossRef Algi MP, Okay O (2014) Highly stretchable self-healing poly(N, N-dimethylacrylamide) hydrogels. Eur Polym. J 59:113–121CrossRef
107.
Zurück zum Zitat Haque MA, Kurokawa T, Kamita G, Gong JP (2011) Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44(22):8916–8924CrossRef Haque MA, Kurokawa T, Kamita G, Gong JP (2011) Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44(22):8916–8924CrossRef
108.
Zurück zum Zitat Shin SR, Bae H, Cha M, Mun Y, Chen Y, Tekin H (2012) Carbon Nanotube Reinforced Hybrid Microgels as Sca ff old Materials for Cell. ACS Nano 6(1):362–372CrossRef Shin SR, Bae H, Cha M, Mun Y, Chen Y, Tekin H (2012) Carbon Nanotube Reinforced Hybrid Microgels as Sca ff old Materials for Cell. ACS Nano 6(1):362–372CrossRef
109.
Zurück zum Zitat Zhong M, Liu Y-T, Xie X-M (2015) Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B 3(19):4001–4008CrossRef Zhong M, Liu Y-T, Xie X-M (2015) Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B 3(19):4001–4008CrossRef
110.
Zurück zum Zitat Fabbri P et al (2012) In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polym (United Kingdom) 53(26):6039–6044 Fabbri P et al (2012) In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polym (United Kingdom) 53(26):6039–6044
111.
Zurück zum Zitat Shi K et al (2015) Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility. ACS Appl Mater Interfaces 7(49):27289–27298CrossRef Shi K et al (2015) Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility. ACS Appl Mater Interfaces 7(49):27289–27298CrossRef
112.
Zurück zum Zitat Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRef
113.
Zurück zum Zitat Jaiswal MK et al (2014) Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 6(9):6237–6247CrossRef Jaiswal MK et al (2014) Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 6(9):6237–6247CrossRef
114.
Zurück zum Zitat Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092CrossRef Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092CrossRef
115.
Zurück zum Zitat Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U (2012) Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 1(2):149–158CrossRef Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U (2012) Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 1(2):149–158CrossRef
116.
Zurück zum Zitat Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364CrossRef Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364CrossRef
117.
Zurück zum Zitat Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3(12):1969–1985CrossRef Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3(12):1969–1985CrossRef
118.
Zurück zum Zitat Sudheesh Kumar PT et al (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl Mater Interfaces 4(5):2618–2629CrossRef Sudheesh Kumar PT et al (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl Mater Interfaces 4(5):2618–2629CrossRef
119.
Zurück zum Zitat Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983CrossRef Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983CrossRef
120.
Zurück zum Zitat Zhang L et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12:1625–1636CrossRef Zhang L et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12:1625–1636CrossRef
121.
Zurück zum Zitat Sudheesh Kumar PT et al (2013) Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30(2):523–537CrossRef Sudheesh Kumar PT et al (2013) Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30(2):523–537CrossRef
122.
Zurück zum Zitat Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95(1):421–427CrossRef Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95(1):421–427CrossRef
123.
Zurück zum Zitat Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng, C 59:109–119CrossRef Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng, C 59:109–119CrossRef
124.
Zurück zum Zitat García-Astrain C et al (2015) Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 16(4):1301–1310CrossRef García-Astrain C et al (2015) Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 16(4):1301–1310CrossRef
125.
Zurück zum Zitat Manjula B, Varaprasad K, Sadiku R, Ramam K, Reddy GVS, Raju KM (2014) Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process. J Biomed Mater Res - Part A 102(4):928–934CrossRef Manjula B, Varaprasad K, Sadiku R, Ramam K, Reddy GVS, Raju KM (2014) Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process. J Biomed Mater Res - Part A 102(4):928–934CrossRef
126.
Zurück zum Zitat Zendehdel M, Zendehnam A, Hoseini F, Azarkish M (2015) Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite. Polym Bull 72(6):1281–1300CrossRef Zendehdel M, Zendehnam A, Hoseini F, Azarkish M (2015) Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite. Polym Bull 72(6):1281–1300CrossRef
127.
Zurück zum Zitat Devaki SJ, Narayanan RK, Sarojam S (2014) Electrically conducting silver nanoparticle-polyacrylic acid hydrogel by in situ reduction and polymerization approach. Mater Lett 116:135–138CrossRef Devaki SJ, Narayanan RK, Sarojam S (2014) Electrically conducting silver nanoparticle-polyacrylic acid hydrogel by in situ reduction and polymerization approach. Mater Lett 116:135–138CrossRef
128.
Zurück zum Zitat Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611(2):205–211CrossRef Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611(2):205–211CrossRef
129.
Zurück zum Zitat Zheng Y, Wang A (2012) Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J Mater Chem 22(32):16552CrossRef Zheng Y, Wang A (2012) Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J Mater Chem 22(32):16552CrossRef
130.
Zurück zum Zitat Skardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich GD (2010) Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels. Adv Mater 22(42):4736–4740CrossRef Skardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich GD (2010) Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels. Adv Mater 22(42):4736–4740CrossRef
131.
Zurück zum Zitat Dong D et al (2016) In Situ ‘clickable’ Zwitterionic Starch-Based Hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces 8(7):4442–4455CrossRef Dong D et al (2016) In Situ ‘clickable’ Zwitterionic Starch-Based Hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces 8(7):4442–4455CrossRef
132.
Zurück zum Zitat Zhu H, Yao X (2013) Synthesis and characterization of poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid)/kaolin superabsorbent composite. J Macromol Sci Part A 50(2):175–184CrossRef Zhu H, Yao X (2013) Synthesis and characterization of poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid)/kaolin superabsorbent composite. J Macromol Sci Part A 50(2):175–184CrossRef
133.
Zurück zum Zitat Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRef Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRef
134.
Zurück zum Zitat Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67(9):769–779CrossRef Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67(9):769–779CrossRef
135.
Zurück zum Zitat Lee WF, Chen YC (2005) Preparation of reactive mineral powders used for poly(sodium acrylate) composite superabsorbents. J Appl Polym Sci 97(3):855–861CrossRef Lee WF, Chen YC (2005) Preparation of reactive mineral powders used for poly(sodium acrylate) composite superabsorbents. J Appl Polym Sci 97(3):855–861CrossRef
136.
Zurück zum Zitat Lee WF, Chen YC (2005) Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents. Eur Polym J 41(7):1605–1612CrossRef Lee WF, Chen YC (2005) Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents. Eur Polym J 41(7):1605–1612CrossRef
137.
Zurück zum Zitat Zhang J, Chen H, Wang A (2005) Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Eur Polym J 41:2434–2442CrossRef Zhang J, Chen H, Wang A (2005) Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Eur Polym J 41:2434–2442CrossRef
138.
Zurück zum Zitat Li P, Zhang J, Wang A (2007) A NovelN-Succinylchitosan-graft-Polyacrylamide/Attapulgite composite hydrogel prepared through inverse suspension polymerization. Macromol Mater Eng 292(8):962–969CrossRef Li P, Zhang J, Wang A (2007) A NovelN-Succinylchitosan-graft-Polyacrylamide/Attapulgite composite hydrogel prepared through inverse suspension polymerization. Macromol Mater Eng 292(8):962–969CrossRef
139.
Zurück zum Zitat Li A, Wang A, Chen J (2004) Studies on Poly(acrylic acid)/Attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym 92:1596–1603CrossRef Li A, Wang A, Chen J (2004) Studies on Poly(acrylic acid)/Attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym 92:1596–1603CrossRef
140.
Zurück zum Zitat Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131(1):1–14CrossRef Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131(1):1–14CrossRef
141.
Zurück zum Zitat Kabir K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Chitosan-modified nanoclay-poly(AMPS) nanocomposite hydrogels with improved gel strength. Polym Int 58:1252–1259CrossRef Kabir K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Chitosan-modified nanoclay-poly(AMPS) nanocomposite hydrogels with improved gel strength. Polym Int 58:1252–1259CrossRef
142.
Zurück zum Zitat Li L, Liu PS, Zhou NL, Zhang J, Wei SH, Shen J (2006) Synthesis and properties of a poly(acrylic acid)/montmorillonite superabsorbent nanocomposite. J Appl Polym Sci 102(6):5725–5730CrossRef Li L, Liu PS, Zhou NL, Zhang J, Wei SH, Shen J (2006) Synthesis and properties of a poly(acrylic acid)/montmorillonite superabsorbent nanocomposite. J Appl Polym Sci 102(6):5725–5730CrossRef
143.
Zurück zum Zitat Islam MS, Rahaman MS, Yeum JH (2015) Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites. Carbohydr Polym 115:69–77CrossRef Islam MS, Rahaman MS, Yeum JH (2015) Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites. Carbohydr Polym 115:69–77CrossRef
144.
Zurück zum Zitat Sarkar DJ, Singh A, Mandal P, Kumar A, Parmar BS (2015) Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: swelling and release behavior. Polym Plast Technol Eng 54(4):357–367CrossRef Sarkar DJ, Singh A, Mandal P, Kumar A, Parmar BS (2015) Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: swelling and release behavior. Polym Plast Technol Eng 54(4):357–367CrossRef
145.
Zurück zum Zitat Hwang SY, Yoon WJ, Yun SH, Yoo ES, Kim TH, Im SS (2013) Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromol Res 21(11):1281–1288CrossRef Hwang SY, Yoon WJ, Yun SH, Yoo ES, Kim TH, Im SS (2013) Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromol Res 21(11):1281–1288CrossRef
146.
Zurück zum Zitat Zhang J, Yuan K, Wang YP, Gu SJ, Zhang ST (2007) Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization. Mater Lett 61(2):316–320CrossRef Zhang J, Yuan K, Wang YP, Gu SJ, Zhang ST (2007) Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization. Mater Lett 61(2):316–320CrossRef
147.
Zurück zum Zitat Zhang Y, Fan L, Zhao P, Zhang L, Chen H (2008) Preparation of nanocomposite superabsorbents based on hydrotalcite and poly(acrylic-co-acrylamide) by inverse suspension polymerization. Compos Interfaces 15(7–9):747–757CrossRef Zhang Y, Fan L, Zhao P, Zhang L, Chen H (2008) Preparation of nanocomposite superabsorbents based on hydrotalcite and poly(acrylic-co-acrylamide) by inverse suspension polymerization. Compos Interfaces 15(7–9):747–757CrossRef
148.
Zurück zum Zitat Wang Q et al (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279):339–343CrossRef Wang Q et al (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279):339–343CrossRef
149.
Zurück zum Zitat Haraguchi K, Ning J, Li G (2015) Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks. Eur Polym J 68:630–640CrossRef Haraguchi K, Ning J, Li G (2015) Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks. Eur Polym J 68:630–640CrossRef
150.
Zurück zum Zitat Hong S et al (2015) 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv Mater 27(27):4034–4040CrossRef Hong S et al (2015) 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv Mater 27(27):4034–4040CrossRef
151.
Zurück zum Zitat Shi F-K, Wang X-P, Guo R-H, Zhong M, Xie X-M (2015) Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B 3(7):1187–1192CrossRef Shi F-K, Wang X-P, Guo R-H, Zhong M, Xie X-M (2015) Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B 3(7):1187–1192CrossRef
152.
Zurück zum Zitat Ahmed NB et al (2017) The physics and chemistry of silica-in-silicates nanocomposite hydrogels and their phycocompatibility. J Mater Chem B 5(16):2931–2940CrossRef Ahmed NB et al (2017) The physics and chemistry of silica-in-silicates nanocomposite hydrogels and their phycocompatibility. J Mater Chem B 5(16):2931–2940CrossRef
153.
Zurück zum Zitat Deubel F, Steenackers M, Garrido JA, Stutzmann M, Jordan R (2013) Semiconductor/polymer nanocomposites of acrylates and nanocrystalline silicon by laser-induced thermal polymerization. Macromol Mater Eng 298(11):1160–1165CrossRef Deubel F, Steenackers M, Garrido JA, Stutzmann M, Jordan R (2013) Semiconductor/polymer nanocomposites of acrylates and nanocrystalline silicon by laser-induced thermal polymerization. Macromol Mater Eng 298(11):1160–1165CrossRef
154.
Zurück zum Zitat Sayyar S, Gambhir S, Chung J, Officer DL, Wallace GG (2017) 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale 9(5):2038–2050CrossRef Sayyar S, Gambhir S, Chung J, Officer DL, Wallace GG (2017) 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale 9(5):2038–2050CrossRef
155.
Zurück zum Zitat Cong H, Wang P, Yu S (2013) Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem Mater 25:3357–3362CrossRef Cong H, Wang P, Yu S (2013) Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem Mater 25:3357–3362CrossRef
156.
Zurück zum Zitat Shah K, Vasileva D, Karadaghy A, Zustiak SP (2015) Development and characterization of polyethylene glycol—carbon nanotube hydrogel. J Mater Chem B 3:7950–7962CrossRef Shah K, Vasileva D, Karadaghy A, Zustiak SP (2015) Development and characterization of polyethylene glycol—carbon nanotube hydrogel. J Mater Chem B 3:7950–7962CrossRef
157.
Zurück zum Zitat Servant A, Methven L, Williams RP, Kostarelos K (2013) Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthc Mater 2(6):806–811CrossRef Servant A, Methven L, Williams RP, Kostarelos K (2013) Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthc Mater 2(6):806–811CrossRef
158.
Zurück zum Zitat Chen Z et al (2014) A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater 4(12):1–10CrossRef Chen Z et al (2014) A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater 4(12):1–10CrossRef
159.
Zurück zum Zitat Ghadban A et al (2016) Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem Commun 52(4):697–700CrossRef Ghadban A et al (2016) Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem Commun 52(4):697–700CrossRef
160.
Zurück zum Zitat Haider H et al (2015) Exceptionally tough and notch-insensitive magnetic hydrogels. Soft Matter 11(42):8253–8261CrossRef Haider H et al (2015) Exceptionally tough and notch-insensitive magnetic hydrogels. Soft Matter 11(42):8253–8261CrossRef
161.
Zurück zum Zitat Guan Y, Chen J, Qi X, Chen G, Peng F, Sun R (2015) Fabrication of Biopolymer Hydrogel Containing Ag Nanoparticles for Antibacterial Property. Ind Eng Chem Res 54(30):7393–7400CrossRef Guan Y, Chen J, Qi X, Chen G, Peng F, Sun R (2015) Fabrication of Biopolymer Hydrogel Containing Ag Nanoparticles for Antibacterial Property. Ind Eng Chem Res 54(30):7393–7400CrossRef
Metadaten
Titel
Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge
verfasst von
Nasrin Moini
Arash Jahandideh
Gary Anderson
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_28

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.